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Ground State of Excitonic Molecules by the Green's-Function Monte Carlo Method
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The ground-state energy of excitonic molecules is evaluated as a function of the ratio
of electron and hole masses, a, with use of the Qreen's-function Monte Carlo method.
For all a, the Qreen's-function Monte Carlo energies are significantly lower than the
variational estimates and in favorable agreement with experiments. In excitonic ryd-
bergs, the binding energy of the positronium molecule (0.=1) is predicted to be —0.06 and
for a «1, the Qreen's-function Monte Carlo energies agree with the "exact" limiting
behavior, E = —2.346+ 0.764+0..
PACS numbers: 71.35.+z, 71.45.Nt

Bound complexes of two electrons and two
holes, known as biexcitons or excitonic mole-
cules, have been observed in a variety of semi-
conductors. ' ' In the effective-mass approxima-
tion with isotropic electron and hole masses,
they are formally identical with hydrogen mole-
cules except that the masses depend on the ma-
terial and their ratio, 0 =m, /m„, can vary be-
tween the limits of positronium (o =1) and hydro-
gen (o«1) molecules. Over the last thirty years,
many theoretical attempts' ' have been made to
investigate the variation of the ground-state ener-
gy of biexcitons with the electron-hole mass ra-
tio o. It has been shown rigorously that (i) the
energy E should be symmetric around ~ = 1 arid

vary monotonically in the range 0 & v & 1,' (ii) the
slope BE/sv ~, ,=0,' and (iii) in the limit a - 0,
the energy should vary as +o'. The data for the
hydrogen molecule can be represented by'

E = (- 2.346+ 0.764@0)E„,

where E„=pe /25'~' is the excitonic Rydberg,
and p, and ~ are the reduced mass, m, m„/(m,
+ m, ), and the dielectric constant, respectively.

In this Letter, the first Green's-function Monte
Carlo (GFMC) calculation for the ground state of
biexcitons is reported. It has been shown by
Kalos and co-workers" that the GFMC method
can be successfully applied to the calculation of
exact ground-state energies of many-body boson

systems. The possibility of extending such tech-
niques to electronic structure problems has been
investigated by Anderson, ' Moskowitz et al. ,

"
and Hirsch et al.' For biexcitons, the GFMC
ground-state energies are considerably lower
than the best variational estimates. ' The GFMC
binding energy of the positronium molecule
(-0.06E„) is a factor of 2 larger than the varia-
tional value, while close to the hydrogenic-mole-
cule limit (0 «1), the GFMC energies agree with
Eq. (1) and hence with the experimental data.

The GFMC method derives from the formal
similarity of the Schrodinger equation and a dif-
fusion equation. This was first discussed by
Metropolis" and subsequently developed by Kalos
and co-workers. " The procedure outlined below
is very similar to the one used by Moskowitz
et al."for LiH. The diffusion equation

and the Schrodinger equation are formally identi-
cal if the potential, V(R), and the wave function,
ps(R, —it), are identified with the absorption
term, A(R), and the probability function, $D(R, t),
respectively. Here 8 denotes a vector with 3N
components, N being the number of particles. If
an arbitrary constant, E„, is added to the Schro-
dinger equation and Ps is expressed in terms of a
complete set of eigenfunctions, p„(R), with eigen-
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values, E„, one finds

S.(R, t) =Cs(B, -tt)
=pa„p„(R) exp[- (E„-E„)t].

For large times, only the lowest-order term
will survive and PD =a,p, (R), provided that E„ is
chosen to be equal to Ep.

The time propagation of $D is accomplished by
the GFMC method. We write

—p v R2 G(R2, t2, H~, t~)

+[V(R2) —E„]G(B2, ta, R„t,)

G (R2, t2, R~, t~) .
Bt2

(5)

Choosing a time step &t =
I t, —t, I small enough

so that U =V(R,) -E„can be regarded as a con-
stant, the solution of Eq. (5) can be written as

G(B„t,+t t, B„t,)
-

(R, H»
=(21rat) '~" exp — ' ' ' - Ut«. t . (6)2~t

4~(R„t,) = fd'"a, G(B„t„B„t,)g, (B„t,), (4)

where C satisfies

where

K(R„t„R„t,) =Jr(B,)G(B„t„R„t,)/$r (B,).
(8)

If pr(B) is close to p, (B); the integral of K over
8, is close to unity which means that the absorp-
tion or creation of configurations rarely occurs
and therefore f(B,t) will be more stable than

$&(R,t). Following Moskowitz etal. ," the short-
time approximation is applied to Eq. (8). It
should be noted that the short-time approximation
of propagator K does not diverge.

The average energy of the system,

fd 8f(B,t)(Hg~ (R )/Pr (R)J
Q'"af(K, t}

is merely the average of gr '&gr over the pop»a-
tion of configurations obtained from the distribu-
tionf(B, t). The difference between (E) and the
exact ground-state energy arises because of fi-
nite time step &t. In LiH, its effect on the total
energy has been found to be 0.05%" and we ex-
pect it to be smaller for biexcitons. Effects of

this size are negligible compared to the statisti-
cal uncertainty of our results.

In reduced units, the Hamiltonian of two elec-
trons and two holes is

Knowing G and some analytic trial function,
$&(B) =$&(B,O), the asymptotic limit of (D(B,t)
can be obtained by iterating Eq. (4) numerically
through a stochastic simulation: A configuration

R, is propagated by first sampling R, from the
normalized Gaussian in Eq. (6) and then evaluat-
ing the weight W(B,) = exp(- U&t). If W(R3) & 1,
the configuration R, is accepted with the proba-
bility W. However, if W(B,) 1, the probability
that a second configuration is created is W(R,}—1
and with this probability a second identical con-
figuration must also be accepted in P~(R2, t,).
The generalization to W(H, ) &2 is obvious. Itera-
tive propagation eventually leads to the lowest
eigenf unction pp.

There are two shortcomings in the above proce-
dure: (i) The creation of configurations is a ma-
jor source of statistical fluctuations, and (ii) the
expression for G, Eq. (6), diverges when an elec-
tron approaches a hole. These can be remedied
by the method of importance sampling. " Multi-
plying Eq. (4) with the trial function g~(R, ) and
defining f(H, t) =&~(B)PD(B,t), one obtains

f(R„t,) = fd'"R, &(R„t„B„t,)f(R„t,), (7)

H=-" (v, 'pv, ')- " (v,2+v, ')
Vlg mg

+ +
+].2 a b ga +gb 2a +2b

For nz, &m» a generalization of the previous
GFMC procedure is required. The trial function,

Pr(B), is taken to be a product of three functions,

g„, g, „, and g„&, which are chosen such that
the electrons and holes are treated on equal foot-
ing:

y„(r) = exp[c,r/(1 +c,r) ];

(». (r) =exp[c.r/(1+c.r)];

g, „=exp[- (nr„+Pr»+ Pra, + nr»)]
+exp[- Pr„+nr» inr, +Pr «)]

The ground-state energy is independent of pr(B),
although a better trial wave function reduces the
variance in the calculation.

The GFMC calculations were performed for a
=0.01, 0.1, 0.3, 0.6, and 1.0. For each o, the
parameters c„c„c»c„n, .and P were chosen
by varying them individually to optimize the trial
wave function. Then with a time step 4t =0.005
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in excitonic units (eu), f(R, t) was propagated for
40 eu to allow convergence to the ground state.
Energy averages and related variances were ob-
tained over an additional time of several hundred
eu.

Figure 1 shows the GFMC ground-state ener-
gies and the variational results of Brinkman,
Rice, and Bell (BRB).' The former are signifi-
cantly lower than the latter. For the positronium
molecule, the GFMC binding energy, —0.06K„,
is twice as much as the variational value of BRB.
For 0 =0.01, the GFMC ground-state energy,
(-2.268+ 0.004)E„, is in excellent agreement
with the exact limiting behavior, E =(- 2.346
+ 0.764+a)E„, but the GFMC binding energy,
0.268E, , is 20% larger than the value of BBR,
0.21E„. In CuBr and CuC1'2 where values of v

are estimated to be 0.01 and 0.02, the experimen-
tal measurements for the binding energy are
= 29 meV and between 34-44 meV, respectively.
Taking E„ to be 110 and 190 meV (see Ref s. 8
and 9), the GFMC binding energies in CuBr and
CuCl are 29 and 45 meV, respectively. The
GFMC slope, &E/8o, is zero in the limit a-1.

Recently, biexcitons have been observed in
stressed Ge(1, 1,16) ' and Si(1,0, 0).' In Ge(1, 1,
16) where electrons and holes occupy single,
anisotropic conduction and valence bands, the
binding energy has been estimated to be 0.15
+ 0.1 meV. Ignoring anisotropy, the GFMC value
for the corresponding mass ratio 0 = 0.7 is -0.16
meV whereas the variational value' is —0.09

meV. Bednarek, Adamowskii, and Suffczynski"
have shown that the anisotropy lowers the ground-
state energies of both excitons and biexcitons,
the former more so than the latter. As a result,
the binding energy of biexcitons (E —2E„) de-
creases with anisotropy and the GFMC value is
therefore a lower bound on the experimental esti-
mat'e. In (100)-stressed Si, Gourley and Wolfe'
report the binding energy of biexcitons to be
—0.10E„whereas in unstressed Si the experimen-
tal estimate' is —0.08E„. For these two cases,
the ratio of the optical masses is nearly unity
and the corresponding GFMC value is —0.0'„,
compared to the variational value —0.03E„.

In conclusion, the GFMC method leads to con-
siderable improvement over the variational esti-
mates for the ground-state energy of biexcitons.
The overall effect is to bring the theoretical re-
sults into much better agreement with experimen-
tal measurements. The remaining discrepancies
between these results and experiment are clearly
due to band effects, and the current method
should be extended to consider such questions.
The GFMC technique should also be applied to
multiexciton complexes for which considerable
experimental data exist." Recently, the ground-
state properties of 'He droplets have been inves-
tigated by this approach. Kith appropriate mod-
ifications, similar calculations should be carried
out for electron-hole droplets. Study of the ener-
getics of the droplet as a function of size will
yield its bulk, surface, and curvature energies
which can be used to test the accuracy of the
existing many-body and density functional calcula-
tions.
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FIG. 1. Ground-state energy of biexcitons as a func-
tion of the electron-hole mass ratio, a. The dotted
curve represents the variational results of Brinkman,
Rice, and Bell (BRB) (Ref. 9) while the solid curve
shows the Green's-function Monte Carlo (GFMC) re-
sults. Here the energies are expressed in excitonic
rydbergs, g„.
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