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A new method based on the S-matrix factorization is developed for the thermodynamics
of the massive Thirring model. The method can be applied to any charge sector and coup-
ling constant. In the zero-charge sector, the present theory reproduces all the Bethe-
Ansatz-theory results in the attractive-coupling regime, and agrees with a perturbation
calculation in the repulsive-coupling regime.
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The Bethe Ansatz (BA) method developed ear-
lier by Yang and Yang, ' Gaudin, ' and Takahashi
and Suzuki' has long been the only method for
studying the thermodynamics of the completely
integrable models in one dimension. Recent
successful applications of this method include
those to the Kondo problem4 and the massive
Thirring model (MTM). '6 All of these applica-
tions' 6 require the introduction of certain exotic
excitations, i.e., the strings in the Heisenberg-
Ising ring' and Kondo problem, 4 and the Korepin
excitations in the MTM. ' Although these exotic
excitations play important roles in the thermo-
dynamics, their physical meanings have not been
understood. Recently, Chung and Chang' pointed
out the unobservability of the Korepin excitations
in the MTM. In this Letter, we present a new

approach to the MTM thermodynamics based on
the S-matrix factorization theory. " Because
of the generality of the MTM, the present formu-
lation is readily applicable to any completely
integrable system for which factorized S ma-

trices are known. Unlike the BA theory, the
present theory does not invoke the Korepin exci-
tations. Instead, the soliton-antisoliton (s -s)
backscattering effect is included explicitly in the
construction of the eigenstate from the beginning.
Our theory is applicable to arbitrary charge sec-
tor and arbitrary coupling constant. ' For spe-
cial cases such as the zero-charge sector with
coupling constants P, = v, and v, + 1/v„where v,
and v, are integers greater than 2, the present
theory reproduces all the BA-theory results. "
The theory is also shown to agree with a per-
turbational calculation in the repulsive -coupling
regime.

Our main task here is to quantize multi-(s-s)
excitations. Let us consider a MTM system with

X, solitons and iV-, antisolitons. According to
the S-matrix factorization theory, the interaction
of these particles accompanies no particle pro-
duction or annihilation and can be described by
the product of successive two-body scatterings.
Therefore, the energy eigenstate of the N (=N,
+N-, )-particle system can be expressed as"

lg) = J f H dX., P &(X,)exp(i5 P,X,)C,
1=1 QE SN j

where yt(X) creates a particle (either soliton or
antisoliton) at X, and Q is an element of the per-
mutation group S„for a set of integers (I, 2,
... , N). The function H(Xo) equals 1 whenXo,
&Xz, .. .«X~ and 0 otherwise. The 4~ repre-
sents a linear combination of „C„basis charge

S
states. Following the procedures of Yang, "we

can describe the quantization of the set of mo-
menta (P, j as the eigenvalue problem

Z, C, =exp(iP, L)C, for j=1, 2, .. . , N, (2)

the length of the system, and the subscript I de-
notes the identity permutation. The two-body S
matrix is defined by S,, )ij)=u, , (ij) and S,, (ij)
= t;, [&j ) +r;, [ij ), where i (i) in the ket vector

II V '(X;)1o&,
1=1

denotes the soliton (antisoliton) with rapidity n;.
X,, =X(n; —n, ) for X=u, t, and r representing
the scattering amplitudes for s-s(s-s), s-s for-
ward, and s-s backward scatterings, respective-
ly. The soliton (antisoliton) momentum is related
to its rapidity by P = M, sinhyn, where M, = p/~
is the zero-temperature soliton mass in units
of the zero-temperature free (P„=2) soliton
mass, and y=n/2p, with ao =v/P'0 and p, =w —u&.

'
With the factorization conditions satisfied by the
two-body S matrices, ' we can show that the Z, 's
commute, and therefore they can be simulta-
neously diagonalized. Yang's method was re-
cently applied to the Kondo problem, 4 where the
eigenstate of the bare Hamiltonian was consid-
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ered. The eigenvalue problem similar to Eq. (2)
for the spin state was derived and eventually re-
duced to the BA formalism. In contrast to this,
our argument is on the renormalized eigenstate
(1) with knowledge of the factorized S matrix.
The quantization of soliton and antisoliton mo-
menta can be derived directly from the eigen-
value problem (2) to a thermodynamically de-
sirable accuracy without resorting to the BA
for malism.

The eigenva, lue problem (2) allows ~C~ charge
eigenstates, with each of which is associated a
unique set (exp(iP, L); j=1, 2, .. . , Nj. Let us
consider the thermodynamic limit N —~ and I.
—~, keeping N/L finite. Then the relevant
microscopic energy eigenstates have the proper-
ty that n; —o.;,-O(1/L) for the overwhelming
majority of i, and the corresponding macroscopic
state is described by the soliton and antisoliton
densities, p, (a) and p;(n), as well as the asso-
ciated hole densities, P, (o;) and P,-(n). As in the
BA formalism, we now assume that the correla-
tion length in the rapidity space is much shorter
than the length scale bn, satisfying 1/L, «Ln «1
[e.g. , b, u -O(1/v L)]. Under this assumption,
the total entropy of the system can be expressed
as a sum of local entropies in the rapidity space.
The same assumption simplifies the eigenvalue
problem (2) and makes it solvable for (P, ) with
an accuracy of O(1). To show this, we divide
the rapidity space into patches of length b, o., and
make the corresponding grouping of the two-body
S matrices, namely Z, =g, , Z@, where n-N/
I.hn and Z . is the product of -LAn two-body S

!
kj

matrices. Under the above assumption the eigen-
state 4, of Eq. (2) becomes the simultaneous
eigenstate of the Z„,'s. Since the degree of ac-
curacy for this procedure is the same as for cal-
culating the total entropy, this procedure is ex-
pected to be correct up to O(1) for (P, 'i, which
is sufficient for the thermodynamics. The eigen-
value problem (2) is then reduced to

ZI g @I-~ay @r ~

with exp(iP, L) =g" =, A. „,. We can further simpli-
fy the reduced eigenvalue problem (3) by replac-
ing all the rapidities in the relevant patch with a
representative one, say n', thereby neglecting
O(1/L) quantities. With this simplification all
g„,. 's in Eq. (3) reduce to a function of macro-
scopic quantities p, (u') and p-, (n') of the 4th
patch, and the resulting charge eigenstates trans-
form into each other under the exchange of par-
ticles in the 4th patch. This means that any
charge eigenstates so obtained are also the eigen-
states of any operators which are produced from
Z„, by permutations of the two-body S matrices
in Z„,. Thus, any two S matrices in Z~,- com-
mute and 4~ becomes the simultaneous eigenstate
of all 8 matrices in Z,„. The eigenvalues of the
two-body S matrix are u and S, =t+r for the
scatterings between s-s(s-s) and s-s with even
(+) and odd (-) parities. ' How frequently u or
S, appears in the eigenvalue is determined by the
probabilities for s-s, s-s, and s-s scatterings.
Consider the jth patch denoted by a representative
rapidity n, to which the jth particle belongs;
then the eigenvalue for the scattering between
the 4th and jth patches is given by

exp(iy„. )=u(o. ' —n)' ' [S„(of'-cv)S (n'-n)]"
v6th

X =p, (~)p, (~') +p;(~)p.-(o. '),
z = p, (o)p;(o ')+p;(o. )p, (o'),

where we have assumed that the parity-(+) scat-
terings occur with an equal probability. From
Eq. (4) we finally find that the quantization of
soliton and antisoliton momenta associated with
the jth patch is given, up to O(1) accuracy, by

P, (u) =(2m/L) x integer+ g 6, , ~ p,.f-s g8

(j =s or sg, where A„=b,;; = —il nua„-=a;,-=-iln(S+S )' '. Here we have introduced a con-
venient notation a * 5=- J „dn'a(n' —n)b(o. ').

The remaining procedures in developing the
MTM thermodynamics are to include the con-
tributions of breathers, to express the free en-

ergy as a functional of p,. and p, , and to min-
imize it with respect to variations of p, , where
j runs over soliton, antisoliton, and breathers.
These procedures have been well established in
the BA formalism. One of the novel features of
the present method is that it can be applied to
the charged sector as well as the zero-charge
sector. Here we minimize the free energy under
the constraint of constant net charge, i.e.,

L J [p,(o) -p —,(n)] dn =N, -N
Consider the case Po v, +q with v, an integer
«1 and 0 &q ~ 1.' Then there are v, —1 kinds of
breathers with the physical momenta

P = 2M sin[(jn/2)(2y —1)]sinh(yo. ),
j=1,2, , . , v, -1." Letting i and j run over soli-
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(6)

8 ~E=E.. + —Q —b, *ln 1+exp —~
& (7)

ton, antisoliton, and breathers, we have obtained
the following basic equations for p, 's and p, 's:

dp, .
=2&(pi+pg) +Z +ji + pi s

where we have defined p, /p, =exp(e,. /T) and E,
=&, -A&,, +A&,—,. &, =(1/y)dP„/dci represents
the particle energy, A is a Lagrange multiplier,
and ~ is the Kronecker delta symbol. A compact
expression for the free energy density can be
derived from Eqs. (6) and (7) as

yT oo -ooF= - P dn E, ln 1+exp -~ +A) dn (p, - p-, ) . (8)

Solving the coupled integral equations (6) and (7)
for a given' and T, we can find the soliton,
antisoliton, and breather densities. Thus Eq.
(8) gives us the free energy and hence all the
thermodynamic quantities.

Two remarks are in order. First, the chem-
ical potentials of particles are calculated from
the formula p, , =(&F/&N, )~ r ~.„,where N,
represents the number of the jth particle. We
obtain p., =A, -A, and 0, for j denoting soliton,
antisoliton, and breathers, respectively. In par-
ticular, in the zero-charge sector e, = e; by
symmetry, and hence A =0 from Eq. (7). In the
previous BA formalism, "it was implicitly as-
sumed that the chemical potentials of particles
are all zero in the zero-charge sector. Here
this assumption has been given a firm basis.
Second, in the BA formalism the e,(a) represent
the excitation spectrum. " This argument re-
mains valid in the present formalism. Then
from Eq. (7) it is seen that when A is positive
(negative) the soliton mass is lighter (heavier)
than the aniisoliton mass. Detailed analysis of
the charged-sector thermodynamics will be
presented elsewhere.

Finally, we show that in the zero-charge sec-
tor the present theory reproduces all the BA-
theory results in the attractive-coupling regime,
and gives results in agreement with a perturba. -
tional calculation in the repulsive-coupling re-
gime. We have numerically solved Eq. (7) for
the A =0 case and calculated the coupling-con-
stant dependences of the free energy E, lowest-
breather mass M», and soliton mass M, . In
Fig. 1, the solid lines represent results from
the present theory at T=2, whereas the crosses
are from the BA theory. ' We find that the agree-
ment is exact within the numerical precision. In
fact, at the points P, = v, ~ 0 (i, ~ 2) the equiva-
lence of both theories can be proved analytically.
On the other-hand, we have performed a first-
order perturbation calculation for the free ener-
gy in the repulsive-coupling regime g=2 p, —n & 0.
Note that the soliton mass M, is coupling-con-

stant dependent; so is the free energy of the
free soliton and antisoliton system with mass
renormalization. Let us write the other finite-
coupling correction to the free energy as 4E.
Then to first order in g, 4E is given by the
Matsubara formula as 6F = (H ')„where ( ~ ~ ),
denotes the thermal average with respect to the
unperturbed system. Writing ~= E, +E, where
F+ and F represent the s-s(s-s) and s-s scat-
tering contributions, respectively, we have

F, = -4, JJ dcido. ' f(u)f(o. ')[1+cosh(o. —u')],

(9)
where f(n) = 1/[1+exp(cosho. /T)]. On the other
hand, we have solved Eq. (7) for c, with A =0 to
first order in g and evaluated the finite-coupling
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FIG. 1. Free energy E, soliton mass Af„and lowest-
breather mass M &&

as functions of the coupling constant
p/w at T =2 (solid curves). Also included are results
from the BA theory (crosses) (Ref. 6). The mass and
temperature are measured in units of the zero-temper-
ature free-soliton mass.
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correction to the free energy by Eq. (8). We
find that, apart from a term due to the coupling-
constant dependence of the soliton mass, this
correction comprises contributions from the
s-s(s-s) and s-s scatterings, which are identi-
cal to E, and E given by Eq. (9), respectively.

In summary, we have developed a new method
for the MTM thermodynamics. This method is
quite general in that it applies to arbitrary charge
sector and arbitrary coupling constant. In the
zero-charge sector, the present theory repro-
duces all the BA theory results in the attractive-
coupling regime, and yields results in agree-
ment with first-order perturbation theory in the
repulsive regime. Moreover, because of the
generality of the MTM and the simplicity of this
method, it can be readily applied to any complete-
ly integrable system for which the factorized S
matrices are known.
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