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The results of a dislocation-loop theory of the nematic—smectic A~smectic C multi-
critical point are presented. A new, biaxial nematic phase is found to intervene between
the nematic and smectic-C phases. These four phases meet at a decoupled tetracritical

point.,

PACS numbers: 64.70.Ew

Since the discovery' in 1977 of mixtures that
display nematic (N), smectic-A (4), and smectic-
C (C) phases, the NAC point where these phases
meet (see Fig. 1) has been of considerable experi-
mental':? and theoretical® interest. Detailed the-
oretical understanding has thus far been confined
to mean-field theory, scaling arguments, and an
expansion* about 5, the upper critical dimension
of Chen and Lubensky’s® Lifshitz-point model of
the NAC point. In this paper we present a dislo-
cation-loop theory of this multicritical point in
three dimensions. This theory makes a surpris-
ing prediction: Four, rather than three, phases
meet at the point where the smectic A-nematic
(AN) and smectic A-smectic C (4 C) phase bound-
aries cross (Fig. 2). The new phase, a biaxial
nematic® (N’), intervenes between the C and N
phases and is intermediate between them in its
properties. It exhibits the orientational long-
range order of the C phase; that is, the smectic
layers are tilted in a fixed direction® (character-
ized by their unit normals, $§) relative to the
nematic director #. Its translational properties
are those of the nematic: The layers have only
short-range positional order,® in contrast to the
C phase which possesses quasi long-range posi-
tional layered order.® Thus, sufficiently close to
the NAC point, the NC transition, which is first
order far from this point and is characterized by
the simultaneous onset of long-range orientation-
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FIG. 1. Experimental phase diagram of the NAC
system. The NC transition is first order.
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al and quasi long-range positional order, occurs
in two stages, through the N’ phase. The system
acquires orientational long-range order at the
NN’ transition and quasi long-range positional
order at the CN’ transition. Both of these transi-
tions are continuous, N’ is therefore a three-
dimensional (3D) analog of the (2D) hexatic’ phase
which sometimes separates the 2D solid and liq-
uid states, allowing a two-stage, continuous melt-
ing process. The multicritical properties of the
NACN' point are exceedingly simple: Our theory
predicts that the degrees of freedom describing
the NA and AC transitions completely decouple.
This implies that these two phase boundaries
cross at a finite angle, and pass through each
other unaffected. The A Cand NN’ boundaries
thus form a single continuous curve, through the
NACN’ point, as do the ANand CN’ lines. The
critical properties of the NACN’ point are there-
fore just a simple superposition of those of the
AN (or CN’) and AC (or NN') transitions and fall
respectively into the universality classes of the
XY®and inverted XY transitions.®!° In the lan-
guage of magnetic systems, the NACN’ point is

a decoupled tetracritical point,!*
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FIG. 2. Phase diagram predicted by the dislocation-
loop theory. Its crucial feature is the NACN' point,
which replaces the NAC point of Fig. 1. As discussed
in the text, N’ may be unobservably small. Though the
NN’ and N’ C transitions are both continuous sufficiently
close to the NACN’ point, one or both of them must
contain a tricritical point. The NN’C is then either a
critical end point or a triple point. The NC transition
is first order.
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We now briefly outline our calculation which is
similar to Toner’s'® dislocation-loop analysis of
the NA transition. In this approach the NA line
is characterized by the critical growth (“unbind-
ing”) of dislocation loops, which are bounded in
size at any point in the A phase., The AC line, on
the other hand, is characterized by critical fluc-
tuations in the C director or (two-component)
“tilt” order parameter® ¢, which is essentially
the angle between the local director and the nor-
mal to the local smectic layers. The point of
view elaborated here is that the NA CN’ point rep-
resents the simultaneous criticality of these two
quantities,

Our starting point is the elastic Hamiltonian
appropriate to the A phase near the A- C phase
boundary. This Hamiltonian takes the form!'? H
=H,+H,+H,; here H, involves only u(X), the
local displacement of the smectic layers; #,, in-
volving only the two-component tilt order param-
eter, ¢, is the Ginzburg-Landau Hamiltonian for
the 3D XY model; and H,, represents the coup-
ling between them. Inthe C phase, where (¢)#0,
the value of (¢) gives the orientation (i.e., §) of
the layers relative to the directors (7).

Description of the NA line and the NACN’ point
requires careful treatment of the periodicity of
H in the layer displacements, i.e., the fact that
states of the system described by [«(X)] and [u(X)
+n(X)a], where n(X) is an arbitrary integer-val-
ued function of X and ¢ is the layer spacing, are
identical. The effect of this periodicity is to al-
low for the existence of quantized topological de-
fects—dislocation loops in this case. As dis-
cussed in Refs, 9, 10, and 13, these loops can be
characterized by an integer-valued vector field
m which points along the dislocation loop and
whose magnitude counts the number of extra lay- |

ers inserted to create the dislocation. The field
u associated with these defects is no longer single
valued; it satisfies

V X Vu(X) = m(X). 1)

That the dislocations form closed loops is mani-
fest in the constraint that the m field be diver-
genceless: Vv -m=0,

Following Kosterlitz and Thouless!* and Nelson
and Toner,'® we decompose % and ¢ into “spin-
wave” and dislocation parts: u=wug+u,and ¢
=Cg+C, This decomposition is uniquely defined
by the requirements that » ¢ be smooth and single
valued while u, and ¢, minimize the Hamiltonian
(#), i.e.,

SH/bul, -, 5=, 08/ 6C], -,

‘D

7=3,=0, (2)
subject to the constraint (1). Solving these Euler-
Lagrange equations and (1) simultaneously, we
express upand ¢ in terms of m. In practice this
is done perturbatively in the anharmonic terms
of H, Inserting the resulting expressions for u,
and ¢, back into (1), we obtain a Hamiltonian in-
volving only the single-valued fields « 4, ¢4, and
m. A series of duality and other transformations
essentially identical to those of Ref, 10 are then
used to handle the divergenceléssness and integer
valuedness of the m’ s, thereby mapping the model
onto a gauge theory involving a complex scalar
field ¥, a two-component vector potential K, and
the fields ugand ¢ The field § acts as a disor-
der parameter for translational order in that it

is nonzero in the translationally disordered phas-
es (N’ and N) and vanishes in the translationally
quasiordered A and C phases.!® The Hamiltonian
for this gauge model, analytically continued to d
dimensions where both & and ¢ have d -1 com-
ponents, takes the form

H= %fd"r{i‘,</)12+2uw|zpl4+ I(V - iK)¢|2+rlgs|2+ 20[65|4+K1°|V L'é»s|2Jr K,° IV X é)slz

+ Ky |0,C 57+ 4w|C P[9Pt +3205 (¢ 2/B+q,2 /K q Bl (3)
q

where K'= Kl _g22/4K1 c’ Km B’ 7, U & ch,
K,°, and K,° were defined in Ref. 12, and 7, u,,
and w are coupling constants introduced in the
implementation of the various transformations.
(Similar Hamiltonians were postulated on a phe-
nomenological basis by Chu and McMillan, by
Benguigi, and Huang and Lien. See Ref. 3.) The
parameter 7 controls the system’s proximity to
the AN phase boundary, though, because of the
duality transformations, the temperature axis
has been reversed; that is, as ¥ increases, the

system moves towards (or deeper into) the A
phase.'® In the absence of coupling between the
Cs and ¥ fields [i.e., with w=0 in (3)], # decom-
poses into the sum of two independent Hamilton-
ians, one a gauge theory involving the ¢ and A
fields, the other involving only ¢ s« The latter of
these obviously describes an XY model. In Ref,
10 the former was likewise shown to fall, insofar
as thermodynamic properties are concerned, in
the universality class of the XY model, though
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with an inverted temperature axis. With w=0,
therefore, the multicritical point, characterized
by the simultaneous vanishing of the appropriate-
ly renormalized versions of » and #, is described
by a “decoupled” fixed point composed of two in-
dependent XY fixed points. The mutual indepen-
dence of the transitions implies that the two phase
boundaries pass smoothly through each other at
the NA CN’ point, producing a phase diagram with
the (tetracritical).topology of Fig. 2. In the N’
phase both ¢ s and ¥ have nonvanishing expectation
values which respectively imply the presence of
orientational long-range order and the absence of
positional long-range order, _

The effect of the term coupling ¢ and ¢ in (3)
has been studied by Aharony!! in the context of
models of the bicritical point. He has shown that
the renormalization-group eigenvalue whose sign
determines the relevance of the coupling operator
is exactly given by 2x=a, /v, +a,/v,; the o’s and
v’s are respectively the specific heat and corre-
lation-length exponents for the two (¢ and ¢ ) de-
coupled transitions. Since « is slightly negative,'®
(e ==0.2) for the 3D XY model, the coupling is
ivvelevant at the transition, The conclusions
stated at the start of this paper follow immediate-
ly; in particular, a biaxial nematic phase must
intervene between the C and N phases, at least
sufficiently close to the decoupled multicritical
point,

The decoupling also implies that the AC and NN’
transitions are identical; both are just ordering
transitions for the ¢ field and so fall in the uni-
versality class of the isotropic X¥ model,'® Like-
wise the AN and CN’ transitions are identical
loop-unbinding transitions, and hence inverted-
XY-like,'°

None of the experimental studies':? of the NAC
point has reported the existence of a new, fourth
phase at that point. There is at least one plausi-
ble explanation for this, If the coefficients w,
uy, and v in (2) satisfy »® > u,v then mean-field
theory predicts!'! a bicritical phase diagram with
no N’ phase and a direct first-order N-C transi-
tion. Though the renormalization-group analysis
implies the existence of the N’ phase at the multi-
critical point, the mean-field result must hold
sufficiently far from this point, The size of the
N’ phase depends on the ratio R=w?/u w¥. When
R > 1 one has to get very close to the multicriti-
cal point before the mean-field prediction of a
single first-order NC transition breaks down;
the N’ phase will in consequence be tiny. This
explanation also suggests which systems might
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be most likely to violate R >1 and hence display
an observable intermediate N’ phase: those with
a short bare correlation length for ¢ fluctuations
(e.g., p-nonyloxybenzoate-p-butyloxyphenol, also
known as 904), for which the AC transition might
not be mean field,'” implying a fairly large v, Ex-
perimental studies of such systems would be of
interest in light of the results of this paper.

Given that the parameters of the problem are
such as to produce the topology of Fig. 2, it re-
mains to elucidate the order of the NN’ and N’C
transitions, Our argument that both are continu-
ous applies only sufficiently close to the multi-
critical point, It is necessary that one or both of
them become first order at a tricritical point be-
fore they intersect at the NN’C juncture, (Were
they both to remain second order until they merge
to form the first-order NC boundary at the NN'C
point then the NN’C point would be bicritical, We
have already demonstrated that such a bicritical
point is unstable,) If both N'C and NN’ become
first order, then NN’C is a triple point; if only
one does, NN’'Cis a critical end point.

The dislocation-loop approach employed here
can readily be modified to produce theories of
the NAC point in a strong magnetic field and of
the m =n=2 Lifshitz point.* Details will be rele-
gated to a separate publication,
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