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Diffusion-Controlled Deposition: Cluster Statistics and Scaling
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Diffusion-controlled deposition in dimension d = 2 is studied by Monte Carlo simulation,
and the number of clusters of size s is found to scale as n, - s with 7- = 1.35. The in-
equality && 2 is shown to imply for a deposit of N particles per nucleation site that the
exponents in the scaling Ansatz n, (N) - s ~f (s /N) satisfy the scaling law o = 2 —7. . If
the scaling properties of deposits on a surface are related to those of an aggregate grown
on a seed particle, z = 1+ t'd —1)/D is obtained, where D is the fractal dimension of the
aggregate.

PACS numbers: 68.70.+w, 05.70.Ln, 64.60.Cn

Studies of the geometrical properties of highly
ramified clusters formed by nonequilibrium
growth processes are of importance in under-
standing phenomena like the sol-gel transition, '
the early stages of nucleation, ' dendritic crystal
growth, the coagulation of smoke particles, ' red
blood cell aggregation, ' etc. One of the simplest
nonequilibrium growth processes which generates
branching structures characterized by a fractal
dimension (D) different from the Euclidean di-
mensionality (d) is diffusion-controlled aggrega-
tion introduced by Witten and Sander. ' In this
model, a cluster is grown from a seed particle as
randomly walking particles launched from distant
points arrive at and stick to the surface of the ag-
gregate. Theoretical studies of the resulting
clusters have so far concentrated on determin-
ing D, and the values obtained from Monte Car-
lo" (MC), mean-field, ' and renormalization-
group' calculations roughly agree with each other.

An interesting consequence of the fractal nature
of the aggregates grown by the above rule is that
the density correlations fall off with distance as a
power law' suggesting an analogy with clusters in
equilibrium systems at a critical point. In order
to explore further this analogy and to point out
some differences arising from the nonequilibrium
nature of the aggregates, we studied the cluster
statistics of objects grown by diffusion-controlled
deposition. The choice of cluster statistics is
motivated by the large body of work existing in
this field for equilibrium systems'" and by the
fact that it seems to be useful in characterizing
nonequilibrium systems"'" as well. The reason
for preferring diffusion-controlled deposition" to
aggregation' is that in the former case an ensem-

ble of clusters appears naturally and, as we show
below, the scaling properties of aggregates can
be easily related to those of the deposits.

Our MC experiments and phenomenological
scaling arguments lead to the conclusion that the
analogy with equilibrium systems holds at the
level of cluster statistics, too. The cluster-size
distributions, (N) as a function of the cluster size
8 and of the number of deposited particles per nu-
cleation site N scales just like that in an equili-
brium system near a critical point. The non-
equilibrium nature of the deposits can, however,
also be seen in this scaling since the critical ex-
ponents acquire values which cannot occur in an
equilibrium system. Furthermore, the normal-
ization of the cluster distribution yields an extra
scaling law, thus reducing the number of inde-
pendent exponents to one. We show that this one
exponent can be expressed through the fractal
dimension of a corresponding aggregate.

Diffusion-controlled deposition" differ s from
aggregation' only by the boundary condition: A

surface of nucleation sites is used instead of a
seed particle. As MC simulations show, the
presence of the nucleation surface and the com-
petition for the incoming particles result in the
growth of a forest of treelike structures (see
Fig. 3 in Ref. 13). For our purposes a cluster
can be defined as a tree (collection of particles
connected to the same nucleation site through
nearest neighbors) and then the study of cluster
statistics becomes the calculation of the size dis-
tribution of the trees in the forest.

In our MC experiments, 6000 to 9000 particles
were deposited on a line of L =1000 nucleation
sites of a square lattice by use of a standard pro-
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cedure described in Ref. 13. If we count the num-
ber of clusters X,(N) containing s particles, the
cluster-size distribution function (the probability
of finding an s-site tree on a nucleation site) is
defined as n, (N) =X,(N)/I. The results are dis-
played in Fig. 1.

One of the notable features of Fig. 1 is the scal-
ing behavior n, -s ' which is similar to that oc-
curring in equilibrium systems at a critical point.
Another important outcome is that 7 & 2. This re-
sult is to be contrasted with the situation in equil-
ibrium systems where the existence of the ther-
modynamic limit requires & & 2. Surprisingly,
the inequality 7. & 2 follows from the existence of
the thermodynamic limit" N- ~ in our case as
well. Indeed, since n, (N) is obviously bounded

by 0( n, (N) ( 1 and since it is unlikely that n, (N)
would have oscillatory or irregular behavior in
the limit N- ~, one expects that e,(N) converges
to some functions, . Now taking the limit N- ~
of the normalization condition

N=g, sn, (N),

we find that if n, - s"' for s - then 7 & 2.
Now, to see a direct consequence of the in-

equality v &2, let us remember that in the limit
Ã- , scale-independent correlations appear,
i.e. , we may consider the system to be at a crit-

ical point. Then considering Ã ' as the parame-
ter measuring the deviation from the critical
point, we may assume the following two-exponent
scaling form for n, (N):

n, (N) - s f (s'/N). (2)

Here f(x) is a cutoff function [f(x) =1 forx«1
while f(x) = 0 for x» 1I and Eq. (2) is supposed
to be valid for large s and ¹ Equation (2) is the
usual scaling Anzac borrowed from the theory
of thermal'4 and geometrical" critical points and
extended to a far-from-equilibrium system. This
extension is suggested by our MC results, and an
additional justification of it comes from a regular
fractal model of diffusion-limited deposition"
where Eq. (2) can be shown" to be satisfied ex-
actly. Now the effect of the inequality ~&2 ap-
pears through the sum rule of Eq (1).. In con-
trast to equilibrium systems where 7 & 2, the
sum on the right-hand side is dominated by the
large (s- ~) clusters; thus Eq. (2) can be used
for its evaluation:

N- J s f(s /N)ds-N

leading to the scaling law v =2 —~.
Obviously, if it is possible to express a quantity

through n, then its critical exponent can be re-
lated to T. As an example, we computed the mean
cluster size 8 - N~:

10
s' 'f(s'/N)ds -N"~ "'
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Fla. l. Number of s-site clusters n~ {N) vs s for
deposits grown on I = 1000 nucleation sites. The
straight line has a slope of y = 1.35. Circles are the
results of statistics made on eight deposits of N & L
= 6000 particles while triangles refer to data from
three deposits of 9000 particles. For small s values
there is no remarkable difference between the results
obtained for systems of different size.

resulting in the scaling relationship y =1/(2 —7 ).
This result differs from the corresponding scal-
ing law y = (3 —7.)/0' in the theory of percolation.
The difference occurs because in percolating sys-
tems Qsn, (N) is not divergent at the percolation
threshold and the o =2 —7 scaling law does not
hold there. Our Mc results for S (Fig. 2) show
that the relationship y =1/(2 —T) is satisfied
within the accuracy of the measurement. Note,
however, that there is a curvature on the I.ns vs
lnN plot and the above scaI.ing law is satisfied
with some effective exponents only. The curva-
ture in Fig, 2 suggests that y & 1,9 and, conse-
quently, for the true value of 7 we should have
7 & 1.5. This indicates that much larger N should
be used in order to reach the asymptotic regime.

Now we show how the one independent exponent
~ characterizing a d-dimensional deposit on a
(d —1)-dimensional plane can be related to the
fractal dimension D of a d-dimensional aggre-
gate grown on a seed particle. For this purpose,
first the root mean square (rms) thickness X(N)
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independent of ¹ Thus N and N are related by
N =N/bR(N)' ', and the condition that the changes
in X(N) and R(N) are equal provided the number
of incoming particles per unit area is the same
gives
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H:Q. 2. Dependence of the mean cluster size S on

N, the number of deposited particles normalized by
the length of the substrate (L = 1000). The straight
line corresponds to an asymptotic slope of y= 1.9.

~ =2 —g/e. (3)

In order to express 6 and & through D and to ex-
plain why the seal. ing X,- s occurs, l.et us imag-
ine a growing aggregate when its radius of gyra-
tion R(N) is large. The tips of its branches grow
in the same way as if they were the tips of the
trees growing out of a pl.ane. Thus the correla-
tions within the large trees are the same as those
within the branches of the aggregate far from the
seed particle. As a consequence, for large s,
X, - R(s), and since R(s)-s'~~, we have g=D '.
This relationship can also be verified" in the reg-
ular growth model. "

The above argument connecting the aggregate
and the deposit may be used to calculate the D
dependence of & as well. It shoul. d be recognized,
however, that D is defined by R(N) N'~ wher-e

N is the number of deposited particl. es in the ag-
gregate while e is obtained from X(N)-¹where
K is the number of particles deposited on a unit
of area. Since the characteristic length in the
aggregate is R(N), its effective surface area
should be given by bR(N)" ' where b is a constant

- K' of the deposit is calculated. Denoting by x,
the distance of the ith particle from the pl.ane,
we have

X'(N) =N 'P,.x,.'=N-'P, sx, 2~,(N)- N",
where X, is the average rms thickness of a clus-
ter of s particl. es. Assuming X, - s and using
Eq. (2), one finds X(N)-Ne ' " and so

w = 1+ (d —1)/D. (5)

With the MC estimates of D, this equation pre-
dicts T (d = 2) = 1.59 + 0.02 and ~ (3) = l.80 + 0.02.
The value ~(2) = 1.6 differs from our MC estimate
~(2) = 1.35 but it is in agreement with the inequal-
ity v(2) & 1.5 derived from the scaling law y = (2
—i) " together with the inequality y & 1.9 suggest-
ed by the curvature on Fig. 2.

We close with two notes. First, D and, as a
consequence of Eq. (4), T are expected to be func-
tions of d only. If, e.g. , Muthukumar's mean-
field expression' D = (d'+ 1)/(d+ 1) is used, then
r = 2d'/(d'+ 1). Second, Eq. (4), together with
the inequality w& 2, yields d —1& D. This result
is consistent with Muthukumar's result' quoted
above.

where the limit N-~ is taken and D '=b lnR(N)/
5 lnN has been used. Equation (4) can be shown"
to be valid in the regular growth model" and it
can also be compared with MC results. D is
measured accurately'" and the values D(d = 2)
= 1.68 + 0.05 and D(3) = 2.50 + 0.05 imply e (d = 2)
= 1.47+ 0.10 and e(3) = 2.00+ 0.20. The corre-
sponding MC values" e(2) = 1.30 + 0.075 and e(3)
=1.70 *0.20 are systematically smaller than the
predictions following from Eq. (4). It should be
noted, however, that the MC results for e are
quite unrel. iable since N is not large enough to
be in the scaling region. The curvatures on the
lnX(N) vs lnN plots of Ref. 13 indicate that the
actual values of e might be considerably higher.

A quantity which is measured with good statis-
tics and provides an independent estimate of e(3)
is the radius of gyration exponent of deposits on
a fiber [R(N)- N, 5 = 0.665 a 0.030j."This ex-
ponent can be related to e(3) by the same argu-
ments used for the derivation of Eq. (4). The
result e(3)=5/(1 —b) =1.99+ 0.03 is in excellent
agreement with our previous estimate, thus giv-
ing confidence in the validity of Eq. (4).

Once e and 6 are known, v is obtained from
Eq. (3):
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After we had submitted the manuscript, P. Mea-
kin informed us that his large-scale MC simula-
tions" of the d = 2 deposition model yielded e(2)
= 1.55 + 0.10 and v(2) = 1.55 + 0.05. Both of these
results are in excellent agreement with our pre-
dictions.
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prior to publication.
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