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The analyzing power A in 28-GeV/c proton-proton elastic scattering was measured
with a polarized proton target and a high-intensity unpolarized proton beam at the Brook
haven National Laboratory alternating-gradient synchrotron. The P~ range of 2.85 to
5.95 (GeV/c) was covered with good precision. A small dip of about —3.5 j() was found

near P~ =3.5 (GeV/c) where a 24-QeV/c CERN experiment had reported a deep dip of
about —16/& with large errors. In the previously unexplored large-P~2 region near 6
(GeV/c)2 these new large-error points suggest that A may be rising.

PACS numbers: 13.85.Dz

Polarized proton beams and targets allow the
study of spin effects in high-energy strong inter-
actions. Since the start of the first polarized
proton beam at the zero-gradient synchrotron
(ZGS) in 1973, many interesting and unexpected
spin effects have been discovered, such as the
large spin-spin forces in high-P~' proton-proton
elastic scattering. ' We recently' reported alter-
nating-gradient synchrotron (AGS) measurements
of the analyzing power A in P+p —p+ p at 28
GeV/c in the P,s range of 0.5 to 2.8 (GeV/c)'.
Such one-spin experiments give information about
the spin-orbit interaction by measuring the an-
alyzing power, which is sometimes called the
polarization. We recently scattered a consider-
ably higher-intensity unpolarized proton beam
from our improved polarized proton target and
measured the p-p elastic-scattering cross section
in the previously unexplored region out to P, '=6
(GeV/c)'. We detected the elastic-scattering
events using a double-arm spectrometer consist-
ing of magnets and scintil. lation- counter hodo-

scopes.
The experiment was run at the Brookhaven Na-

tional. Laboratory's alternating- gradient synchro-
tron (AGS) with use of a primary extracted beam
of about 7 &&10"protons/pulse at 28 GeV/c. We
installed fast steering magnets in the D beam
line to compensate for small variations in the
AGS beam momentum, which could cause signifi-
cant variations in the beam position at our po-
larized proton target (PPT). The steering mag-
nets were servo-coupled to a split-plate ion
chamber near the PPT to reduce the horizontal
beam motion. The beam position and the 10~12-
mm' full width at half maximum (FWHM) (H && V)
spot size at our PPT were monitored continuously
by three upstream segmented wire ion chambers
(SWECs), and the beam position was kept centered
to within ~ 0.5 mm. The relative beam intensity
was measured by five independent monitors. '
Elastic scattering events were detected by the
double-arm IB spectrometer shown in Fig. 1 of
Ref. 2. The angles and momenta of both outgoing
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protons were measured with use of six magnets
and the forward (F) and backward (B) four-chan-
nel. scintill. ation counter hodoscopes, with each
channel defining a center-of-mass solid angle of
about 6&10 ' sr. We collimated the magnet aper-
tures with l.ead to reduce the single-arm rates
and thus the accidental. rate which was typical. ly
less than 10%%uo. The data at each Pi' point were
corrected with use of the measured accidental
rate.

The incident proton beam was scattered from
the Michigan polarized proton target' (PPT) con-
sisting of a 'He evaporation eryostat inside a 4He

evaporation eryostat, a 25-kG dipole magnet, a
70-6Hz microwave system, and a 107-MHz NMH

system. The target beads were contained in a
cylindrical copper„cavity 29 mm in diameter by
40 mm along the beam direction. The 'He cryo-
stat maintained a 0.5-K temperature in the cavity
which was pl, aced in the highly uniform 25-ko
vertical magnetic field. ' We actually used a 40%-
60%%uc mixture of 'He-'He in the 'He cryostat. The
'He supercools the He to 0.5 K where 4He is a
superfluid with high heat-transfer capacity. This
'He- He mixture allowed operation at a beam in-
tensity of 7&10"/pulse with a polarization loss of
less than 10% due to local beam heating. We be-
l.ieve thai this new mode of PPT operation ap-
pears quite promising for use with very high-in-
tensity beams.

To eliminate the radiation damage probl. em due
to the high beam intensity, we used chemically
undoped crystalline ammonia (NH, }beads, which
become polarizable when irradiated. The beads
were irradiated with 70-MeV electrons from the
l.inac at the National. Synchrotron Light Source.
The radiation produces electron centers which
allow the microwaves to polarize the protons. '
The radiation damage with these NH, beads was
quite sl.ow and was completely anneal. ed away by
warming to 95 K. Moreover, the average polar-
ization steadily increased as we collected data
and the beam protons created new centers. The
target polarization, Pr, reached 55%%uc after irra-
diation with about 10"particles/cm'. We con-
tinuously monitored Pr with a + 3% uncertainty
using two independent NMH coil.s of different
radll.

We covered the Pi' range of 2.85 to 5.95 (GeV/
e)' by varying the magnet currents without moving
the detectors or magnets. At each I'~' setting, we
varied the coincidence logic timing and the mag-
net currents about the calculated values to as-
sure a. cl.ean elastic signal at the correct I'~'

1 N(0) —N(&)

P, N(t)+N(i) ' (2)

We use the Basel convention; thus the minus sign
occurs because our forward proton scatters to the
right.

The results are tabulated in Table I along with
our estimated uncertainty, which includes both

TABLE I. The analyzing power A. in 28-GeV/c pro-
ton-proton elastic scattering at various values of Pi'.
Estimates of the systematic errors have been added in
quadrature with statistical errors. The background
correction factor was fitted to be 0.98+ 0.044P~2 from
the measured Teflon points at Pi'=3.8, 4.2, 4.7, and
5.2 (GeV/c) .

Background
(GeV/c) uncorrected correction factor

2.85
3.00
3.30
3.80
4.20
4.95
5.95

0.04 + 1.17
—0.14+ 1.48
—3.07+ 1.23

2.04+ 1.35
1.44+ 2.03
5.33+ 2.60

10.58+ 7.76

1.10+ 0.03
1.11+0.03
1.13+ 0.03
1.15+ 0.03
1.17+ 0.03
1.20+ 0.04
1.24+ 0.05

0.0+ 1.3
—0.2 + 1.7
—3.5+ 1.4

2.4~ 1.6
1.7~ 2.4
6.4+ 3.2

13.1+ 9.6

value. The background rate for nonhydrogen
events was measured by replacing the normal
PPT beads with Teflon beads which contain no
hydrogen. The measured nonhydrogen background
correction factor was respectively 1.13+ 0.01,
1.18+ 0.02, 1.19+ 0.03, and 1.21 + 0.06 at P~~ val. -
ues of 3.8, 4.2, 4.7, and 5.2 (GeV/c}'. We cor-
rected all data as indicated in Table l, using a
linear fit for the I'~' dependence of this back-
ground.

We scattered the unpol. arized proton beam from
the polarized proton target in each transverse
spin state (i = & or &) and obtained the normalized
event rates N(i) by measuring

N(&) = Events(&)/I(&), N(i) = Events(4)/1(f), (1)
where Events(i) is the number of FB events cor-
rected for accidental. s and nonhydrogen back-
ground and I(f) is the beam intensity obtained by
averaging the monitors, M, N, K, SEC, and Ion
(see Ref. 2). When all five monitors did not agree
within 1% we eliminated the monitor or monitors
with the largest disagreement. We used the F
and B single-arm rates to check the monitor con-
sistency further. The analyzing power was ob-
tained from our measured values of N(i) with use
of the equation
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statistical and systematic errors. The results
are plotted in Fig. 1 along with the 24-GeV/c
CERN data' and our earlier data. ' There is gen-
erally good agreement between the experiments
within errors, except that our earlier point at
P~'=2. 8 (GeV/c)' seems somewhat high. Upon
reexamination we found two possible problems
with the earlier point. The first recoil magnet
was set slightly l.ow probably giving a true Pi'
value near 2.7 (GeV/c)'. Thus the rapid varia-
tion of A could cause some of the difference.
There could also be some systematic error due
to the beam position stability since the servo-
magnet system was not yet installed. A statis-
tical fluctuation could easily have caused much
of the difference, and so we plan to remeasure
the point.

One notable feature of our data is the dip near
Pi'= 3.5 (GeV/c)' where A drops to about —3.5%.
This dip is much less deep in our data than in the
CERN data; however, the CERN data has quite
large errors. lt is very interesting that this dip
occurs near the sharp slope change in the differ-
ential. cross section, which is at exactly the same
Pi'=3. 5 (GeV/c)' where the dramatic increase in
spin-spin effects was observed' at the ZGS.

Note that beyond Pi'= 3.5 (GeV/c)' it appears

that A may be increasing. The errors are large
and better statistics are clearly needed near Pi
=6 (GeV/c)', nevertheless, the data suggest in-
teresting and quite unexpected behavior in this
previously unexplored large-P»' region. The 12-
GeV ZGS data' on A showed little deviation from
zero in the Pi' range of 3.5 to 5 (GeV/c)'. How-
ever, at 12 GeV, the Pi'= 5 (GeV/c)' point occurs
at 90' (c.m. ) where A must be zero from symme-
try. Most theoretical models predict that A should
be zero at large P~'. Our data are not in good
agreement with zero beyond P, '= 3 (GeV/~)'.
Thus, this first look at spin effects at large P~'
suggests the possibility of unexpected spin-orbit
forces in hard scattering.

The striking structure observed in various
high- Pi' spin experiments cannot be explained
by present theories of strong interactions, such
as QCD. The rapid increase in spin-spin effects
discovered at the ZGS occurs exactl. y at the start
of the large-P~' hard scattering region. The dip
in A near P, '=3.5 (GeV/c)' occurs at the same
start of the hard-scattering region. The occur-
rence of both spin effects at the exact position of
the break in do/dt suggests that these spin effects
may be associated with the onset of some hard-
scattering mechanism. We hope soon to study in
more detai1. the possible rise in A near P~'=6
(GeV/c)' and to search for further spin effects in
the totally unexplored hard-scattering region be-
yond Pi'= 6 (GeV/c)'.
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FIG. 1. The analyzing power A as a function of Pi '
for pp elastic scattering at 28 GeV/c. The error bars
for the present experiment include both statistical
and systematic errors. The 24-GeV/c CERN data
(Ref. 6) and our earlier AGS data (Ref. 2) are also
shown. The curves are hand-drawn lines demonstrating
flat and rising behavior at large P~ ~.
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