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Volkov Solutions, Gauge-Poincare Transformations, and Plane-Wave Decoupling
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A solution is found for the vector-particle equation with Yang-Mills coupling to an
electromagnetic plane-wave potential. The local gauge and Poincare transformation
structure of such generalized Volkov solutions of sirgle-particle equations (spin ( 1)
leads to a decoupling theorem for the scattering of a system of particles immersed in an
external plane wave.

PACS numbers: 11.15.Kc, 11.10.Qr, 41.70.+t

(D'+ rn')0 =0 (scalar).

(iP —m)% =0 (Dirac);

(D'+ m') 4 „+2iQ F„„4'= 0,

D ~ 4 = 0 (vector).

(1a)

(1b)

(1c)

The covariant derivative is D -=&+i@A and F„,

The Volkov sot.utions of the Dirac and Klein-
Gordon equations in the presence of an external
electromagnetic plane wave are well known and
widely used. ' Neverthel. ess, their underlying
symmetry' has not been fully exploited nor has
a spin-1 version been given.

In this Letter we find a counterpart to the Vol-
kov solution in the vector-particle case for an
external Yang-Mil. l.s coupling. All three Volkov
wave functions (spin 0, 2, 1) are shown to be gen-
erated by a field-dependent, local gauge- Poin-
care transformation of the free-field solutions.
The transformation structure is intimately tied
to the local gauge invariance of renormalizable
field theories for spin; a new characteristic of
local gauge symmetry thus emerges.

With the form of such solutions we derive for-
mulas for the collective modifications of charged-
particle lines due to background plane waves. We
prove a decoupling theorem for tree-graph am-
plitudes for particle interactions that take place
in this background, namely that the collective ef-
fects vanish in certain kinematical zones, as
long as any derivative couplings are "minimal. ""4
In lowest order this reduces to the radiation ze-
ros found in single-photon tree amplitudes. '
The decoupling effect can be included among in-
teresting possibilities for l.aser/plasma exper-
iments such as the intensity-dependent frequency
shift. '

Consider a particle with charge Q and mass m,
gauge-covariantl. y coupled to an external plane
wave A„=A„(n ~ x), n~=0, in the Lorentz gauge
n ~ A = 0. The corresponding wave equations for
the three spins are

is the field-strength tensor.
We find that the solutions to (1) can all be writ-

ten in the form

e(x) = ULT X(x), (2)

where X is the free solution (Q = 0) and ULT is
a product of local gauge (U), Lorentz (L), and
displacement (T) transformations. For the re-
spective (scalar; Dirac; vector] plane-wave so-
lutions

Xp(x) = e "'"(1;w (p); n(p)), (3a)

with

p =rn pw=mw g ~ p=0

we have

L =e~ = fl; 1+%;Aj,
S = f 0; (Q/2n ~ p )g g =- F;

(q/n p)(n„A„- A.„N„)—= 0„,},

(3b)

(4a)

(4b)

T(d)=e '~'', d"=(q/n ~ p)J" "dr A"(z).
The demonstration of (2) for the plane waves

(3) follows from Lorentz covariance and the im-
portant operator identity

(UT) 'Dp(UT) =A„"8„. (8
This identity, which holds when we can freely
interchange p —i 8, shows a fundamental con-
spiracy among internal and space-time symme-
tries where the phase transformations change
the covariant derivative into the Lorentz trans-
formation of the free derivative.

representing an element of the local little group
E, (n):

(e Q)

= g„,.~l. .—l ~'/2(' p)'~A"„,.
Also

U(0) = e*", e = (q /2n p)J d z A'(z)
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~, = 11(ULT),u(pp, .), (10)

along with the substitution n ~ x —in ~ 8/Bp, . in
each (ULT), The additional changes for vertices
with derivative couplings are discussed below.

The particle scattering amplitude in the pres-
ence of the external field is thereby expressed,
to all orders, as a nonlocal momentum-space
transformation (derived from a, local configura-
tion-space transformation) on the field-free am-
pl. itude. For example, the nonlocal operator se-
quence

produces the harmonics that are expected for a
monochromatic wave, A„=2Be (N~~e "'"), with
frequency ~ and momentum q =~n. Strictl. y, a
spatial cutoff on A. is needed, a point to which we
will return.

We now explore the condition under which al. l

(ULT), refer to the same. group parameters such
that their product in (10) collapses to unity by in-
variance. Suppose that

Q, /n ~ p,. = same (12)

for all external. particles i (charge Q;, momen-
tum p,. ), a constraint which specializes to the so-
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The preceding results generalize the form of
the Volkov solution for a Dirac particl. e given long
ago-by Taub' in terms of "variable Lorentz ma-
trices." Our extension to the vector case as well.
as our identification of the universal nature of
the gauge-Poincare parameters (G,d, A) obtain
only for minimal derivative couplings. ' The uni-
versality of (2) will be lost, for example, for
solutions with anomalous magnetic moments.

In the absence of an external field, the tree
amplitude for the scattering of a system of par-
ticles (spins ( 1) can be written as

&= rl, li, jdp, D(p, ) V(a), (9)

where the k-legged vertices V(k) include mo-
mentum-conservation delta functions 5(g'p, .) and
the D(p, ) are internal. line propagators. (For a
given vertex all particl. es can be defined as in-
coming. ) In the presence of a minimally coupled
external electromagnetic field A(n x), the cor-
responding tree ampl. itude V~ requires modifica-
tions of the external and internal legs at each
vertex. For constant particle couplings, these
modifications of (9) follow from the Fourier trans-
form of (2) and amount to making the 5-function
replacements 6 -6, , where

cal.led null-zone condition" for radiation zeros.
Then 0, , d, , and A,- are all independent of j since
the action of 8/Bp, . on the delta function in (10) is
the same for all j. For ea.ch vertex, therefore,
charge conservation, momentum conservation,
and Lorentz invariance yield

k

II ( UL T ), =1,. null zone,

whigh is the statement of the decoupling.
According to (13) the null zone is forbidden to

the particles, unless they can get there by colli-
sions among themselves (an "elastic" limit). Be-
cause of the gauge nature of its interactions, an

external plane wave can transform itself away
from a system of particles. The system, as with
Perseus in his Helmet of Hades, becomes invis-
ible in the "el.astic" null zone.

For example, consider electron scattering,
e + e —e + e, in the presence of an el.ectro-
magnetie wave train perpendicular to the incident
(c.m. ) electron beams. In first-order photon ex-
change, but to all. orders in the external field,
the onl;y events where the electrons have equal.
energies and equal angles relative to the plane-
wave axis [satisfying (12)] are the elastic for-
ward-scattering collisions and these are without
external-f iel.d modulation. The inelastic events
require interaction with the plane wave which,
for a monochromatic wave, corresponds to the
emission/absorption of a "photon" with momen-
tum� /q, E=1,2, . . . .

We can extend the decoupling theorem to parti-
cle interactions that include minimal derivatives. '
The fundamental identity (8) indicates that single
derivatives of scalar fields are Lorentz trans-
formed as a result of the plane-wave interaction
so that Lorentz invariance again leads to (13).
Derivatives of Dirae and vector fields produce
extra terms in (10), involving derivatives of L,
that have no general mechanism for their cancel-
l.ation in the nul. l zone. However, the trilinear
Yang-Mills interaction for vector fiel.ds X, Y, Z,

.&vM = I"(I"D„Z, )+ & "(~"&„I,)
+ Z ~(X'DqI;)+ H.c., (14)

does yield a cancellation of the L derivatives,
following from the Bianchi identity for F„,, so
that the decoupling remains true in this case.
This also implies that Higgs-like second deriva-
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tives of scalar fields are allowed corresponding
to the replacement of any of the vector fields in
(14) by a gradient of a scalar field.

Summary and xemarhs .—(1) Our principal re-
sults —the form and spin-1 extension shown in
(2), the identity (8), the external-field modifica-
tion rule (10), and the decoupling theorem (13)—are distinctively related to renormal. izable
gauge theories in view of the minimal. -derivative
requirement.

(2) Our results provide a. basis' for the develop-
ments in Refs. 4 and 5. The internal-line de-
composition identity, vertex expansion, and ra-
diation representation are generalized by the ex-
ponential forms in (10), while Eq. (8) explains
the relationship seen between first-order contact
currents and the first-order Lorentz transforma-
tion. Radiation symmetry now reads Q,./n ~ p,.—Q, /n ~ P,. + C, which follows from (10) and (13),
and there is also a generalization availab1. e for a
non-Abelian background wave. The amplitudes
for N collinear photons can be shown to be pro-
portional to the Q" terms derived from (10);
thus mul. tiphoton zeros also follow from the de-
coupling theorem.

(3) To be precise, the S-matrix description
requires that the wave train A(n x) is finite,
so that the monochromatic external field must
be taken as a limiting case." Al. though, for ex-
ample, the intensity-dependent frequency shift
is found only when this limit is very carefully
considered, the decoupling result is independent
of the limiting procedure, surviving careful an-
al.ysis such as that given in the papers of Brown
and Kibble. ' Indeed, we find that the frequency
shift vanishes in the null zone as it must for de-
coupling.

(4) Decoupling does not hold in general, for non-
minimal interactions, which spoil universality;
for closed loops, where (12) cannot be main-
tained; and for higher spins [higher powers in
(4)] with no mechanism for the cancellation of the
extra terms that arise in (10). With additional
or different symmetries, higher spins and/or
other potentials may have an analogous duality
(and UI. T transformations) where the interac-
tions are written in terms of (perhaps ultimately
all of) the associated symmetries. We might ex-
pect that plane waves are necessary, however,
for the perfect interference shown in the decoup-
ling.
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