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Some rigorous inequalities governing hadron masses in QCD are proved. One states
that the electromagnetic mass shift of the pion is positive. The other states that if m~~

'

is the mass of the lightest meson made from a quark of type A and an antiquark of type
B, thea —under conditions such that annihilation into gluons can be ignored —

2m&& m&&
+ m~3. These inequalities agree with experimental data and have analogs for arbitrary
vectorlike gauge theories. The first inequality has applications to the vacuum alignment
problem in vectorlike technicolor theories.

PACS numbers: 12.35.Eq, 12.70.+q, 13.40.

Recently, there has been a surprising amount
of progress in proving rigorous results about
quantum chromodynamics. No doubt the most
startling property of QCD is color confinement.
Tomboulis' has proved by a rather intricate al-
though conceptually simple argument that lattice
SU(2) gauge theory of arbitrarily weak coupling
is confining.

It has been found more recently that surprising-
ly simple arguments yield rigorous information
about the pattern of breaking of global symme-
tries. Weingarten proved' that (at 9 =0) of all
color-singlet channels with nonzero isospin, the
lowest threshold is in the pseudoscalar channel.
If one assumes confinement, then this together
with 't Hooft's old argument' shows that QCD with
zero-bare-mass quarks must have a massless
pseudoscalar of isospin 1—presumably a Gold-

!
stone boson. Vafa and Witten' showed that in vec-

Dk

torlike gauge theories (like QCD) vectorlike sym-
metries (like isospin or baryon number) cannot
be spontaneously broken (at 9 =0). The combined
results of Befs. 2 and 4 strongly indicate that in
arbitrary vectorlike theories the conventional
wisdom is valid: The axial symmetries are spon-
taneously broken, and the vector symmetries are
unbroken. This proposal was apparently first
made explicitly by Peskin. '

5ussinov' has also argued for some highly
plausible but not fully rigorous inequalities among
meson and baryon masses. In fact, the second
inequality in this paper is a special case of one
of Nussinov's inequalities.

In this paper some new inequalities will be
proved. The approach will follow the strategy in-
troduced independently in Ref s. 2 and 4. The
Euclidean fermion determinant in vectorlike
gauge theories is positive definite, and so the ef-
fective measure

(V„'(k)V„'(-k))—(A„(k)A„'(-k))- 0,
showing that the electromagnetic mass shift of the pion is positive, in agreement with observation.
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d p = Z ' H dA„'(r) detach + M) exp[- (I/4g )fd'x TrE„,'] (I)
&~V~ &

for the A„' integration obtained after integrating out the fermions is positive definite (at 8 =0). Inequal-
ities that hold pointwise continue to hold after integrating with respect to a positive measure, so that
any inequality among matrix elements that holds after performing the Fermi integral in a fixed back-
ground gauge field holds in the exact theory.

Now, let us consider the electromagnetic mass shift of the charged pions. According to the classical
current algebra formula, ' this is

m +2-nz c2=(e2/i „')f(d4k/k2)[(V„S(k)vp (-k)) —(A„3(k)A„(-k))]. (2)

Here V„' and A„' are qiy„T'q and qiy„y, T'q, respectively. [The factor of i in the definition of V„' and
A„may seem unfamiliar. It arises as follows. The Hermitian vector current in Minkowski space is
V„'=gy„A.'P, where( „y, yj=2g„„nad q„, has signature (+ ——-). If our Euclidean gamma matrices
obey (y„,y„] =25„„then we must take y„- iy„ in rotating from Minkowski space to Euclidean space. ]
The two-point functions (V„'(k)V„'(-k)) and (A„'(k)A„'(-k)) are both positive because V„' and A„' are
Hermitian operators. The sign difference (V„'(k)V„'(—k)) —(A„'(k)A„'(-k)) is not obvious, but on vari-
ous phenomenological grounds"' it has been claimed that (2) is positive in nature and in arbitrary vec-
torlike theories. In fact, we will prove that for any (Euclidean) k„,
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Specifically, we introduce an arbitrary quark bare mass n and an arbitrary suitable ultraviolet cut-
off A, such as the cutoff of Asorey and Mitter, ' and we work in an arbitrary finite volume V. We wi11
prove that (3) holds for any values of m, V, and & and therefore in any limit such as m - 0, V
A- ~.

We have

(V„'(k)V„S(-k)&—(A„3(k)A„S(-k)&

=(1/V) fd'x fd'y e ' '" '[-&Vy„I'q( )ey„T'V(y)&+ &Vy„y,T'V(x)ey„y, T'V(y)&]

=(2/V) fdic fd4xd y e'" ~" ' [+ Try„S(x,y;m) y„S(y,x;m)" —Try„y, S(x,y;m) y&y5S(y, x;m) ].(4)

[A factor of (- 1) reflects Fermi statistics, and a factor of 2 reflects the fact that TrT, ' =2.1 Here
S(x,y;m)" is the propagator from y to x of a fermion of bare massm in a background gauge field A. It
may be written

S(x,y;m) =&xl I/@ + m)ly& =&xl (-P+m)/[- y)'+m2] ly&.

In (4) we encounter the difference y„Sy„—y„y,Sy„y,. This projects out the part of S that commutes with
y„' I call it E (x,y;m ) = (x!E!y &, where

(8)

Now, E is a positive definite operator; that is, (~IEl ~& 0 for any state! ~&. This observation is the

key to the present argument.
We now have

(k)V (-k)& —(A„(k)A„(-k)& =(4/V) fd fd' d'y ~" 'T „E(x, ; ) „(,; ). ( )

We define an operator M„(k) that consists of multiplication y„e" ". Specifically [M„(k)y]g) =y„y(x)e""
for any p. The adjoint operator M„(k) consists of multiplication by y„e ' ". Then (7) can be written

(V& (k)V&~(-k)& —(A&3(k)A& ( k)& =-(4/V) fdic TrM&(k)EM&*(k)E, (8)

where now the trace refers to a summation over
spinor indices and an integral over x; summation
over subscript p is implied.

For any operator M„and any positive operator
E, TrM„EM„*E is nonnegative. (I et E =g;&;I& &

x(i! with X;~ 0. Then Tr M„EM„*E=L, , I (ilM&
x!j&! 'X;A., - 0.) So (8) is positive. This com-
pletes the proof that the electromagnetic mass
shift of the pion is positive.

The sign of this mass shift would have a partic-
ular significance if the bare masses of the up
and down quarks were zero. In that case, the
charged pions would be massless up to electro-
magnetic corrections. If these corrections were
negative, the charged pions would become tach-
yons, triggering a shift in the vacuum and spon-
taneous breakdown of electromagnetic gauge in-
variance.

Just this question arises in technicolor theo-
ries,""in which one typically considers fermi-
ons of zero bare mass with superstrong gauge

! interactions. The phenomenology of these theo-
ries depends crucially" on the outcome of the
vacuum alignment problem, which in turn depends
on the sign of the analog of the electromagnetic
mass shift of the charged pions. The present
argument, by its nature, clearly applies to arbi-
trary vectorlike technicolor theories, settling
the vacuum alignment problem in agreement with
previous arguments" of a less rigorous nature.
Insofar as the arguments of Ref s. 5 and 8 are
valid, the present argument also indicates that
the analog of the p meson is always lighter than
the analog of the A& meson in vectorlike theories.

The second inequality to be presented here is
a refinement of considerations of Ref. 2 and has
been considered independently by Nussi&ov. Let
n and/ be two quark flavors. Of all mesons with
nP quantum numbers, the lightest is a pseudo-
scalar. ' The two-point function in the pseudosca-
lar channel is

(nay, P (x)Pi y,n(0)& = fd pTry, S@,0„m . )"y,s(0,x;m 8)".

I et U =S(x, 0;m )" and V=S@,0;m q) . Since' S(0,x;m)" =y,S*(x,0;m)y, (where S* is the adjoint of S,
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regarded as a matrix in spinor space), we have

(niy, PQ)Piy, n(0)) = fdic TrUV*. (10)

Now, suppose that in the nn or pp channels,
gluon intermediate states can be neglected (Fig.
1). This is true for large N for any n or p. It is
true for any N if m or mB is large. It is true
in weakly coupled vectorlike theories such as
quantum electrodynamics. And it is true in any
case if instead of eo we consider n'n, where o. '

and o are two distinct quarks of essentially equal
mass (for instance, the up and down quarks).
Then the lightest nn or pp mesons are pseudo-
scalal s ~ and

(ni y,n g)ni y,n (0))
=

fdic

Try, S(,O;m „)"y,S(O,x;m „)"
=

fdic.

TrUU*,

(P~r, p( )Pir, p(0)& =fd~»VV*.
By the Cauchy-Schwarz inequality as used in Bef.
2

~ fd pTrU, V*~ '- fdp TrUU*f d p, TrVV*, (12)

so that

y.P@)P r, (0)&I'

- &niy, ng)niy, n(0)&(Piy, P(r)P~r, P(O)&. (13)

If there is a mass gap in each channel, so that

(»y.P( )P~y, n(0)& ~ "~ "= exp(-m. 81~I),

(niy, ng)niy, n(0)) ' " "-"exp(-m„~~x~), (14)

&Piy. P&)Piy, P(0)) " "= exp(-mao~xi)

then (13) means

(15)

1 e m~pzs
m(y8 —m ~+mg

2 Izc m~+mg '

2m
O'. O', CX (16)

2m oa ~m(y~ +m Bgo

Before comparing to experimental data, let us
check that (15) is reasonable by comparing to
some theoretical formulas. For very weak coup-
ling (in QED or in QCD with quarks weighing
hundreds of gigaelectronvolts), the masses in (15)
can be evaluated using a Bydberg formula:

which may be readily verified.
For large N, (15) should hold for arbitrary val-

ues of m andm8. If m„andm8 are small, the
masses in (15) can be evaluated by current alge-
bra; we expect

m 8 =z(m„+ms)"2, m„- =A, (2m )'~',

m 88 =z(2m 8)"',
with a common constant A. . Then (15) amounts to
the true statement that

(18)

2 (m + m )"'~ (2 m )"'+ (2 m )"' (19)

Comparing now to experimental data, we first
take n to refer to the up or down quark; we can
take m „„- to refer to m„; =m, . We take P to be
the charmed quark. Mass shifts due to gluon in-
termediate states are certainly tiny for «states,
in view of the very small widths of these states.
So we take the q, as the lightest cc state, and the
D as the lightest cu or cd state, and we expect
from (15) that

2 m L) m g + m I) ~
C

(2o)

This is certainly valid, with ma =1870 Me&, m,
=135 MeV, and m „=2980 MeV. [Equation (20) is
somewhat ambiguous, since the pion mass would
be rather different if the up and down quarks
were degenerate, but the ambiguity is well within
the margin by which (20) is satisfied. ]

Now we take n to be the strange quark and p the
charmed quark. Unfortunately, for ss pseudo-
scalars it is not a good approximation to ignore
annihilation into gluons, as the g and g' masses
show. However, with some loss in rigor we can
compare (15) to experimental data as follows.
We use current algebra to estimate that in the
absence of gluon annihilation the masses of an ss
pseudoscalar would have been

b b
~0000+g.+
i0000000.
&0000000,

b b

FIG. 1. qq annihilation into a gluon intermediate
state is suppressed under certain conditions described
in the text.

1 e ma
m88 2mB

2 j'zc 2

Then (15) amounts to the statement that

m~ m8 mom@2
+

2 2 m~+m8 (17)

m -„+m g
—m„g

= (m «+'+m ~o' —m „')"'.
For m, -, and m„- we take m~ and m „,respec-
tively, so that the inequality (15) becomes

2m~~ (mx+'+m~o'-m „')"'+m„, (22)
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which agrees with experiment (the left-hand side
is 3.94 GeV and the right-hand side is 3.67 GeV).

If in the future the masses of bc and bb pseudo-
scalars are measured, (15) gives the clean pre-
diction

m, -. ~ ~Q „+m „,) (23)

which will be interesting to test.
It should be clear from the discussion that the

proof that 2m 8
~ m - + m 88 holds only for the

lightest pseudoscalar in each channel. Nussinov, '
however, has suggested the same inequality inde-
pendently and has argued that it holds not just for
pseudoscalars but for the lowest state in each
partial wave channel. He has given a variational
argument which, while not a complete proof,
makes the result highly plausible. Nussinov has
also suggested that the present inequality rn, +

~ m, o follows from the inequality 2m ~ -e
+m 88 in the full-fledged SU(3) SU(1) gauge theory
of strong and electromagnetic interactions, with
o. and P taken as up and down quarks.

In conclusion, let us discuss briefly what sort
of regularization is compatible with the argu-
ments given here. The basic property of QCD
that has been used is that detg+M) &0. To pre-
serve this property, one might choose to define
this determinant in the continuum for fixed A „,
and then do the A„ integral with a suitable cutoff.
A suitable cutoff would be the gauge-invariant
Pauli-Villars treatment that was put on a rigor-
ous mathematical basis in Ref. 9. This appears
satisfactory. One encounters difficulties if one
tries instead a lattice regularization. Kogut-
Susskind fermions preserve the positivity of the
fermion determinant; unfortunately, they do not

respect all of the vector symmetries, limiting
the class of questions that can be conveniently
asked of the lattice theory. Wilson fermions, on
the other hand, do not have a positive definite de-
terminant, except (presumably) in the continuum
limit. "
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