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Percolation on Fractal Lattices
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Numerical evidence of a percolation phase. transition ori infinitely ramified exact frac-
tals is presented. The percolation transition is studied by a real-space renormalization-
group technique on a family of exact fractal lattices with fractal dimensionality d between
1 and 2. The critical exponents for percolation depend strongly on the geometry of the
fractals.
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Phase transitions on fractal lattices' ' and the
fractal properties" ' themselves have currently
been a subject of intensive investigation. How-
ever, percolation, which is considered the most
fundamental example of phase transition, ' has not
been studied yet on fractal lattices. This is be-
cause most research on phase transitions on
fractals has been done on Sierpinski-gasket-like
fractals which are finitely ramified. ' On these
fractals percolation takes place only in the unin-.
teresting limit p, =1.

In this Letter we present a family of exact
fractals with infinite ramification. Percolation
on these fractals is nontrivial. ' We present nu-
merical evidence for a percolation phase transi-
tion as well as a simple real-space renormaliza-
tion-group (RSRG) approach for calculating the
percolation threshold p, and some percolation ex-
ponents. The threshold p, and the critical expo-
nents are found to vary according to the fractal
lattice specif ications.

We first study the fractal shawn in Fig. 1(a).

NWiNaj~m

g 'j$x pj's
jyx' g Ni&%8"'

(a) e) (c) (d)
FIQ. 1. (a) Fractal lattice used in Monte Carlo simu-

lations. (b) —(d) Members of the fractal family (for b

=2, 3, and 4, respectively) studied by BSBQ. In each
case only the first iteration is shown.
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This fractal has an infinite ramification since up-
on each iteration of Fig. 1(a) the number of con-
nections between different parts of the fractal in-
creases by a factor of 2. In fact, we find it use-
ful to define the ramification exponent p as fol-
lows. ' Suppose one can isolate a part of the
fractal of linear size R by "cutting" it at the mi-
nimal number of places, V(R). Then as a conse-
quence of self-similarity

N(R) =R'.
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FIG. 2. The second iteration of Fig. 1(a). Each full
row in Fig. 1(a) is split to two rows here; thus p
= ln2/ln5.

FIG. 3. Fraction of clusters reaching the edges of
the lattice {white symbols) and of those which terminate
before {black symbols), as a function of the concentra-
tionp for different lattice sizes: 25' 25, square sym-
bols; 125&& 125, diamonds; 625&& 625, circles.

R~~~ R" 2~ o t; &d —2p. (2)

It can be shown that 2 —d- P so that Eq. (2) gives
a better bound than p& d —1.

We expect percolation to take place at p, &1
whenever p) 0. The fractal displayed in Fig. 1(a)
(with d = ln16/ln5) has p =ln2/ln5 so that nontrivi-
al percolation may be expected. We carried out
Monte Carlo simulations of site percolation on
fractal lattices built from two, three, and four
iterations of Fig. 1(a). The second iteration of
Fig. 1(a) is shown in Fig. 2. On each of these
exact fractal lattices we grew clusters by the
cluster-growth method, ' that is, a site near the

The exponent p ranges between 0 for finitely ram-
ified fractals (e.g. , the Sierpinski gasket) to p
= d —1. for homogeneous space. Moreover, let a
fractal have a fractal dimensionality d and a re-
sistivity exponent' L. Then in each section of the
fractal of linear size R there are at least R~

fractal threads each being at most R'/R~ long.
Thus

center of the fractal was chosen as an origin and
each site around it belonging to the fractal was
designated as being occupied with probability p
or not with probability 1-p. The cluster growth
was continued from the new cluster sites in a
similar way til. l it either terminated or reached
all. the edges of the fractal. In Fig. 3 we show
for each of the fractal lattices described above
(25&&25, 125&&125, and 625&&625) the fraction of
clusters reaching al. l. the edges as well as the
fraction of those which terminate before reach-
ing any of the edges, "as a function of the con-
centration p. The two curves intersect at points
a, b, and c as shown in the figure. A sharper
transition takes place as the lattice size increas-
es. From the data for the largest lattice, p,
= 0.915 + 0.010. Also extrapolation of the inter-
section points a, b, and c yields a percolation
threshold p, = 0.92. We apply to this problem a
RSRG approach of Reynolds et a/. " A renormal. -
ized fractal cell is said to be occupied with prob-
ability p' if there exists a percolating cluster
from the lower edge of the fracta1. to the upper
one. Thus,

p' = p'2+ 12p" (1 —p) + 51p'0(1 —p)2+ 96p9(1 —p)3+ 86p8(l —p)4

+ 46p'(1 -p)'+ 14p'(1 —p)'+ 2p'(1 -p)',

which has the trivial fixed points P" =0, 1 but
also the nontrivial. one P, = 0.9221 in good agree-
ment with the numerical data.

In order to investigate percolation as a function
of the exponents d and p of the exact fractal lat-
tice we present the following fraetal family. The
first iteration of each member of the family is
based on a ring embedded in a square of 0 &b d =in[4(b —1)]/lnb, (4)

! sites. In Figs. 1(b), 1(c), and 1(d) we show the
first iteration of the eases of b =2, 3, and 4,
respectively. Note that the case of b =2 is just a
homogeneous square lattice. The fractal dimen-
sionality of a member of size h is
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and p is

p = ln2/ln b.

TABLE I. Characteristic exponents of the fractal
lattices and the critical exponents of percolation on

these lattices.

Thus, if we vary b, 4 ranges between 1 and 2 and

p between 0 and 1. If one applies the same RSRG
technique as before one obtains the general re-
cursion formula

p' =2p -p'

from which the percolation threshold p, can be
calculated. The correlation-length exponent is

2

3
4
5

10
100

Fractal
d

2

1.89
1.79
1.72
1.56
1.30

1
0.63
0.5
0.43
0.30
0.15

0.6
0.85
0.92
0.95
0.989
0.999 90

percolation

1.63
2.13
2.43
2.69
3 ~ 60
6.79

0.63
0.27

v =lnb/In[25(1 —p,
" ')]. 1nl

M~ ln2
lnM
ln2

ln4 ln2 1
lnM 1nM MThe calculation of the exponent P is carried out

by the ghost-site method" (the ghost site is at-
tached to each site on the cluster with a probabil-
ity 8). The bond between the ghost site and an occupied cell renormalizes to h' p' if there is a perco-
lating path connecting the lower edge of the cell and the ghost site. Thus one gets for b = 2 (homoge-
neous space)

h'p'= p h +4p (1 —p)h +2p (1 —p) 8;
for 5 =3,

h' P
' = P 'h, + 8P '(1 —P)h, + P'(1 —P)'(14 h, + 8 h, +2 h, ) + P'(1 —P)'(10k, + 7Q, + 2 Pg,)

+ p'(1 —p)4(6h, + 4h, ) + 2p'(1 —p)'h .

and for b =M»1,
e p = p'~-'a, „,+ (4m —4)p' '(1 —p) A, ,„,+.. .,

(8)

(10)

where h, =1 —(1 —h)'. In Eq. (10) the missing
terms make a negligible contribution. The expo-
nent P is extracted by linearizing these equations
at the critical point p, [obtained from Eq. (&)]

and h, =0. Then

Bh'/&hi~, „,= d —P/v

so that using Eq. (4) and the value of v found from
Eq. (7) one is able to calculate P. Results for
several vat.ue:s of b as we1.1. as for the limit b = M
»1 are displayed in Table I. According to this
table p increases as d and p decrease towards

the result obtained in one-dimensional space.
The changes of p and d al.so have a dramatic ef-
fect on the exponents v and P of the percolation.
Note that the results obtained for the fractal in

Fig. 1(a) are similar to those obtained in Table I
for b =4.

An important result of this work is the pres-
entation of a physical model to the problem of

the dimensionality d approaching to unity from
above. "'" Table I implies that for d - 1 (M» 1)
the critical exponents are v = 2/(d —1), P - [2/(d
—1)] exp[-4 ln2/(d —1)], and p, —1 —exp[- 4 I.n2/
(d —1)]. It is interesting to note that these re-

! suits have the same dependence on d —1 as those
obtained by the renormalization-group tech-
nique. "'" The constants, howeve~, are different
because of the specific geometric structure of

the fractal family used.
We have shown that a percolation transition

takes place on exact fractal lattices with infinite
ramification. We have suggested the exponent p
to characterize the ramification and given bounds
on it. The question of whether p is derivable from
other critical exponents or not remains open.
Finally, we note that an interesting situation
arises for fraetals with a fracton dimensionality
ranging above and below d&=~4 because of a con-
jecture by Alexander and Orbach. It is reason-
able that df of the fractal should be bigger than
or equal to d~ of the percolation cluster on the
fraetal. Then for df higher than T one expects
the conjecture for percolation that d~ = 3 to hold.
It would be interesting to have this conjecture
checked for percolation on fractal lattices. Also
the question what happens for d& less than —,

' is
still unanswered. What would be the required
value of d~~ There is still much numerical and
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theoretical work to be done on this intriguing sub-
ject.
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