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Transport Dynamics of a Large Acoustic Polaron in One Dimension
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The transport dynamics of a large polaron has been studied in a one-dimensional system
whose underlying vibrational spectrum is acoustic in character. Such a polaron moves as
a heavy quasiparticle with transport relaxation time, v, determined mainly by collisions
with thermally ambient phonons. Concrete results show that 7 decreases monotonically
with increasing temperature, in sharp contrast to the previously treated problem of a
large polaron in a one-dimensional Einstein lattice.

PACS numbers: 71.38.+ i

In the past years, charge transport in quasi
one-dimensional (1D) systems, such as poly-
acetylene, has received a great deal of attention.
Whereas solitons and polarons seem to be the key
to the understanding' of transport in such sys-
tems, the rigorous formulation of a transport the-
ory for quasi 10 conductors has been lacking so
far. In a recent paper' (hereafter denoted as I"),
one of the present authors (T.H.) developed an
a priori quantum mechanical treatment for the
dynamical behavior of a 1D large polaron within
the framework of the well-known molecular crys-
tal model (MCM) in which the vibrational spec-
trum of the host lattice is of optical (Einstein)
type (&u, = &a,). In the present work, the basic
method of I is applied to a 1D deformation-poten-
tial model in which the vibrational spectrum has

acoustic (Debye) character (&u, =c, ~ q~). Avoiding
the mathematical difficulties of the more elabor-
ate models, ' we elucidate some of the basic physi-
cal principles which govern polaron transport
relaxation due to thermally ambient acoustic pho-
nons. As pointed out below, the continuous char-
acter of this vibrational spectrum gives rise to
profound differences in polaronic transport pro-
perties from those that obtain in the case of the
molecular crystal model of I. These results, to-
gether with those of I, should hopefully provide
insight into the more complicated models' of
polaron (and soliton) transport in which both pho-
non species are present.

The Hamiltonian of a single electron coupled to
the acoustic vibrations of a monoatomic linear
chain via a deformation potential, in the continu-
um approximation, is

H = fdn(P2 (n)/2M+ M c,2b 2 (n)/2j —(k 2/2ma2) 82/9 x2 —Cb. (x),

Hl = Jdn P (n)/2M+E[U(n)]. (2)

For the above-defined electronic problem, in

where &(n) =- a ' &U/&n is the one-dimensional
dilatation of an arbitrary vibrational distortion,
U(n), P(n) is the canonically conjugate momen-
tum, and x is the electron coordinate in units
of the lattice constant, a; in addition, M, rn, c, ,
and C are the atomic mass, electron band mass,
sound velocity, and deformation-potential coup-'

ling constant, respectively.
As in I, we treat the problem via the adiabatic

approach in which the vibrational kinetic energy
in (1) is initially dropped. The eigenfunctions
and energy eigenvalues of this truncated Hamil-
tonian are then solved (in prinicple) as functions
of the vibrational coordinates, U(n). Of particu-
lar interest are the ground-state wave function,
g[x;U(n)], and energy eigenvalue E[U(n)]. Ac-
cording to the adiabatic approach, the effective
vibrational Hamiltonian is then

U~" (n —$/a) = (Ca/Mc, ')tanh[y(n —E/a)],

E =@'/6m L',

where

(3)

(4)

L a/y = (262/=rna2) Pfc, /C2)a (5)

is the linear dimension of the polaron. The quan-

which the vibrational kinetic energy term of (1) is
dropped, the resulting Hamiltonian is completely
equivalent to the corresponding truncated version
of the MCM Hamiltonian, given in Eq. (3) of I.
This correspondence is seen by replacing the sym-
bols &(n), c„and & by the MCM variables u„,
(d„and A, respectively. Because of this corre-
spondence, which, of course, holds only for the
static problem, we take over the results of I
without further ado. In particular, the equilibri-
um displacements, U'"(n), and the corresponding
minimum energy, E[U "(n)]=--E~, are given by
(cf. also Whitfield and Shaw' )
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(6)

tity $ occurring in Eq. (3) denotes the arbitrary "centroid" coordinate; this arbitrariness reflects the
translational invariance of the system.

Furthermore, the vibrational potential energy for small deviations, u(n), from the equilibrium is
[cf. I, Eq. (10); also Shrew and Young']

E,[u] -=&[U'"+u]-&[U'"]=; dn dn', [&(n n-') —G(n, n')]+ 0(u').Mc,', Bu(n) Bu(n')

The term containing the matrix G(n, n') repre-
sents the change in the lattice dynamics of the
host crystal arising from the presence of the
polaron. G(n, n') is a function of "relative" site
variables, n, n' =n —$/a, n' —$/a, as given in Eqs.
(lla) and (11) of I.

In sharp contrast to the optical case treated in
I, the vibrational normal modes, u (n), and fre-
quencies, , associated with Eph form a contin-
uum containing all positive values of & ', corre-
sponding to the underlying acoustic spectrum of
the host lattice. Indeed, for ~ &0, the asymp-
totic form of the mode functions consists of ap-
propriate combinations of plane waves, exp(taqn)
(!q!

-=to~/c, ), depending on the boundary condi-
tions. However, as in I, there also exists a set'0-
frequency, spatially localized mode u, (n) - BU~ "/
~g which represents an infinitesimal rigid trans-
lation of the polaron, when multiplied by an in-
finitesimal amplitude. Since the associated re-
storing-force constant is zero, the effect of the
vibrational kinetic energy term of (2) will cause
the actual physical amplitude to be dynamically
unbounded, thereby invalidating the small-ampli-
tude expansion which underlies (6).

Follawing I, we surmount this difficulty by in-
troducing the transf ormation'

U(n) =U~o~(n —$/a) + Q(n —(/a)

= U~'~(n —(ja)+ g Q u„(n —(/a),
a&0

wherein the centroid" parameter, &, is treated
as a dynamical variable, together with the non-

translational (o & 0) coordinates, Q„. Introducing
(7) into (2), we have, after a number of manipula-

(14)

Finally, as discussed in I, the quantity Pph may
be considered as the momentum associated with
the vibrational field; we shall refer to it as pho-
non momentum. "

We now evaIuate the "cross section, " i.e. , the
reflection coefficient for a "collision" of the pola.-
ron with a single phonon. Knowledge of said re-
flection coefficient mill permit a straightf onward
calculation of the rate of polaron transport relax-
ation due to interaction with thermally ambient
phonons. For this calculation, it is convenient to
introduce the retarded phonon Green's function

!tions [cf. also Ref. 6, Eq. (25)]

III. -H
p h + Hp, (6)

Hph =fdn 1'I (n) /2M+ E
p h[Q(n)], (9)

H, -=[(I/t)B /Bg —P,„]2/2M, ,
where

Ii(n) = 5 u (n)Ehjt)BIBQ. , (11)
cx&0

Pp„fd-n Q(n)a 'BII/Bn, (12)

M =Mfdn[ ~BU~O~/Bn]2=4E / 2 (13)

Note that the quantities II(n) and Q(n) do not obey
conventional commutation relations, but rather

[ll(n), Q(n )]=(h/)(6(n-n ) —,(n)..(n )].
As in I, Eq. (21), we have neglected certain
terms in the polaron kinetic energy, H~, which
would only give rise to small corrections to the
polaron effective mass M~ for the case treated
here, namely, polaron velocities small compared
to c, . The quantity P = g/i)B/Bg is a constant of
motion, representing the total momentum of the
system. Note, i.n particular, that the kinetic mo-
mentum of the polaron, M~ $ &P, but rather

Mp$ =P —Pph.

D(n, n', (u) —= (- i)f (P! [Q(n, t), Q(n', 0)]!P) exp(i&et)dt,

where! P) is that eigenstate of H with total momentum P which has the lowest energy. The calculation
of D(n, n, &u) is greatly simplified by introducing the approximation

(16)H~=—(P —Pph) /2M' =P /2M~ —V~Pph, —

where V~= P/M~, i.e., by neglecting the term P~h /2M~. The physical justification of this approxima-
tion is that when k'T «E~, as is assumed in this paper, the ratio of the mean thermal momentum of a
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phonon, kT/c, , to that of a polaron, (2M~kT)"', is (kT/M~ c, ')"' and hence small. Our philosophy is
to regard (16) as generating a zeroth-order Green's function, higher-order corrections to which may
be obtained by treating the neglected term as a perturbation. Such calculations are deferred for future
study.

With the replacement of (10) by (16), the Hamiltonian of the system becomes quadratic in the vibra-
tional field operators, Q(rj) and II(g), and the equation-of-motion method yields for D (q, g, v)

t GO . V 8 9
! a——i~ —y-, D(g, g', cu)c c Bg 9'g

2azU~ . 8 9 8
dq" —G(q, q")—,~ i u, (g)u, (q") ~ —— „u,(q)u, (g") „D(q",g', ~)

g S

= (ha'/Mc, ') [5(q —g') —u, (g)u, (q')].

With the source point, q', at —~, (17) takes the
form of a homogeneous linear equation, describ-
ing the propagation of a one-dimensional lattice
wave "through" the polaron. Assuming a purely
outgoing wave, exp(iaq, q), at q-+ ~, we obtain
the incident and reflected wave amplitudes, of
form exp(iaq, q) and exp(- iaq g), where q, =- &o/

(c, +V~). In particular, for the limiting case of

V~
= 0, we find for the reflection amplitude, x(g,

V~),

(K)0)'= —yLK) K«lq (18)

I/~ =(/~MAL') f «~l ~(~, 0)!'(&T, /T) exp(~T

where T, =&c,/kL is a crossover temperature.
Namely, for T «T, the reflection coefficient of
phonons with thermal wave vector q,q- T/LT,
«1/L is I r(Lqtq, 0)!'-T, whereas the velocity
change due to a reflected thermal phonon is 4V
-2@q,q/M~-T and the number of thermally ex-
cited modes is proportional to q, q- T; thus I/~- T~. For T» T, phonons with q - 1/L and ther-
mal occupation n, - T/T, give the main contribu-
tion to transport relaxation. Therefore we have
1/~ —T in the high-temperature limit. Since the
change of the polaron velocity in a collision with
a thermal phonon is inversely proportional to the
polaron mass M~, we have 1/& - 1/M~ and the
mobility y, =~/M~ is independent of M~.

It is of interest to compare the foregoing re-
sults to those obtained in I. In the optical model

v(z, 0) =2m'iv'exp(-&w), w» 1, (19)

where tc =Leo/c, . For V~&0, the corrections to
(18) and (19) are of the order! ~V~/c, ! and

! K'V~/c, ! exp(- ~~), respectively, for ! V~! «c, ,
and thus small. The result for ~»1 has been ob-
tained by straightforward use of the Born approxi-
mation. The derivation of (18) will be presented
in our more complete report.

, /T) [exp(~T, /T) —1] (21)

! (I) transport relaxation is also dominated by re-
flection in polaron-phonon encounters. As a re-
sult of the complete degeneracy of the underlying
Einstein spectrum, however, the collision dynam-
ics is determined mainly by the polaron kinetic
energy, the ref lectivity depending strongly on the
polaron de Broglie wave vector, 0» namely,
I &(k&)I '- exp(-2&Lk~). A significant conse-
quence of this last result is that the effective re-
laxation time, i.e., (7),t, „~,) (not(1/~), g„,) '!),
increases for temperatures T & T - (hu&, xS'/
2M~L')"'/k, despite the increase in phonon popu-
lation. In the present case, however, in which
the underlying vibration spectrum is acoustic,
the polaron is the heavy" object in a collision,
the dynamics is determined by the acoustic pho-

! In order to treat transport properties, we in-
corporate (18) and (19) into a semiclassical Boltz-
mann kinetic approach which, although in some
sense heuristic, nevertheless, in our opinion,
contains the correct physics. The basis of the
treatment is an expression for the probability per
unit time, P(V - V')d V', for a polaron of velocity
V to make a collisional transition to a differential
velocity range between V' and V'+dV' which for
thermal velocities ! Vl, I V'I (kT/M&)"'~«,
reads (to sufficient accuracy)

P(V- V') =—(M c, /4n5)n, (1 +n, )!v(z, 0)!2. (20)

Here n, =1/[exp@&,!q! /kT) —1], & —= L(!ql +!q'I)/
2, and the wave vectors of the incident and re-
flected phonon, q and q', are given in terms of
V and V' by the collision kinematics.

Introducing (20) into the Boltzmann equation for
the polaron velocity distribution function, we ob-
tain the transport relaxation rate as.
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non energy, and I r I

' depends only on the phonon
wave vector q, even for I-k~» 1. As a conse-
quence, the transport relaxation time (and hence
the mobility) shows the monotonically decreasing
temperature dependence discussed above.

Finally, a remark about the conditions of the
adiabatic approach (2) is in place. Qualitatively,
we expect it to be valid, if the electronic binding
energy, E~, is large compared to the typical
phonon energy cf order @c,/L. With use of (4)
and (5), this becomes equivalent to the strong-
coupling requirement (v/12)C'/Mc, '»R~D (~D
=—&c,/a). Apart from a logarithmic prefactor,
(2/w)ln(~L/a), of order unity, this condition coin-
cides with Ref. 5 Icf. their Eq. (108)].
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