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Theory of Activated Rate Processes: Bridging between the Kramers Limits
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The Kramers theory for the escape rate of a Brownian particle moving in a potential
well is generalized to account for the full viscosity range. An expression for the escape
rate, which is valid for all values of the friction and yields the Kramers results in the
appropriate limits, is obtained.

PACS numbers: 05.40.+j, 05.60.+w

The Kramers approach to the theory of activated rate processes, ' using a model of a Brownian par-
ticle moving in a one-dimensional potentia1 we11, has played a centra1 role in many areas of science.
The starting point is the Fokker-Planck equation for the probability distribution P= P(», ua t),

aa a dv(x( aax aa a ar aaa)—D +y —vj +
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where m, v, andx are the mass, velocity, and
position of the particle moving in the potential
V(x), T is the temperature, y is the friction,
and 0 is the Boltzmann constant. The objective
is to find the steady-state escape rate (r) out of
the potential well. Kramers has obtained differ-
ent limiting results for this rate:

((uo(u~/2vy) exp( E~/A T-) (y- ~), (2a)

This expression yields (2a) for y» &u~ while for

y(E /A, T)exp(-E /kT) (y- 0), (2b)

where ~, and ~~ are the frequencies associated
with the second derivative of the potential at the
bottom of the well and at the barrier top, re-
spectively, and where E~ {assumed to be much
greater than kT) is the depth of the well. Kram-
ers has also derived an expression which is sup-
posedly appropriate for "intermediate" values
of y..

! y-0 it goes to the transition-state-theory (TST)
rate

r Ts T(&u, /2&) exp(-E~/A. T) .
Even though these results have long been dis-

cussed and used in the literature, a unified theo-
ry for r as a function of y that yields the forms
(2)-(4) as limiting cases has never been provid
ed. (For recent attempts to construct such a
theory see Skinner and Wolynes' and Matkowsky,
Schuss, and Ben- Jacob. ') In this work we de-
rive for the first time a general expression for
r(y) that reduces to the forms (2) and (3) in the
appropriate limits. This in turn enables us to
identify ranges of the friction for which the dif-
ferent results are valid.

Our approach is based on a picture which di-
vides the particle phase space into two (assumed
overlapping) regions. In the first, for low ener-
gies, the variation of the phase is assumed to be
much faster than that of the energy {i.e., y «&u)
so that a Smoluchowski equation for the energy
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(or the action J} is valid. Then in action-angle
space, P(J, y, t) =(1/2m)P(J, t) and'

&P(J, t)
t

In the second, at higher energies Kramers bar-
rier dynamics' [leading to Eq. (8}below] holds. 4

This picture does not cover the situation where
the motion is overdamped (y &~) for all energies.
However, in this case the escape rate is governed

by the barrier dynamics and any assumption con-
cerning the well motion is of no consequence.

Kramers's result (3) is obtained by joining
together a steady-state (SS) solution of Eq. (1)
near the barrier top with an equiiibwium solution
in the well. This procedure disregards the pos-
sibility that for low friction the well motion is
not in equilibrium. Instead, we join, at a point
(x„J,) determined below, using appropriate con-
tinuity conditions, SS solutions of Eqs. (1) and
(5) and thus obtain a unified expression for the
SS current that reduces to all the different Kram-
ers limits under the proper conditions.

Considering first the motion in the well we note
that a general SS solution of (5) is given by'

qqp~(A=exp(- )A +A f dp', exp( )
(Note that the upper limit of the integral can be chosen arbitrarily and was assigned the value J for
convenience. ) This solution corresponds to a SS current on the action axis,

j„,„'~& = —y (~ {kr „+~(A)pp, "~'(J)=pTA, .

Turning to the 88 solution P» near the barrier top, the Kramers function

+2 v- (a+1)yx 2

P (Ã ) Bexp ' d ep
OO

(6)

(8)

where

provides a suitable solution, corresponding to
the net SS current j„»~~~ on the x axis given by
[with g„ss = j d5 vPss (x v) ]

exp — 10

Kramers has determined the coefficient 8 of (8)
by matching the distribution (8) with a Boltzmann
distribution (BD) in the well. This leads to ex-
pression (8) for the rate. However, for small y
the barrier distribution (8) should go over to the
distorted distribution (6) in the well.

To proceed we have to assume that the distribu-
tions (6) and (8) overlap in some region of phase
space. This is supported for chemical reaction
models by the observation that for a reasonable
choice of potential and friction parameters, the
action equation (5) provides a good approxima-
tion up to E~ 0.98~.' However, since the func-
tion (8) cannot describe a phase-independent dis-
tribution, it follows that this function is valid
only in a region near the potential well. Referring
to Fig. 1 we assume that there exists at least one

! point (x„o,=0) corresponding to the action J=J,
so that the distribution (6) is valid for J ~J,
while (8) is valid for x ~x,. Next we determine
the parameters A„A„J„and 8 so that the bvo
distributions match at (J„u,= 0) so as to satisfy
essential continuity conditions.

First, noticing that the Jacobian for the (J, y)
to (x, v) transformation is just the mass m, we

Ej- ——

Xj
X

FIG. 1. The potentials used in the calculations of
Fig. 2.
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get (ni/2~)P»'"~(J, ) =P»'~'(x» v =0), which leads
to

A, = (2v/m)B j ' dz exp(-o. mz'/2/e T) ~

[.0 1.0

Secondly, we notice that at SS the molecular flux
crossing the line J=J, must be equal to that
crossing the line x =x,. Therefore [with Eqs. (7)
and (ll)]

0.5 0.5

g 3i2 xp (12}
0.0

[0 3 IO (0 —I

0.0
)00

a

az ln(P (6) e ElkT)
Ej go 0

Finally, we require that at the matching point (x
=x„v=0} the distributions (6) and (8) represent
the same amount of distortion relative to a BD,
namely,

y jcuo

FIG. 2. Matching energy E'j (dotted line) and escape
rate y as functions of friction. The full lines are re-
sults based on Eq. (17). 'The dashed lines are results
based on the Kramers equations (2b) {rising lines) and
(3) (descending line). The points with error bars are
results of numerical simulations based on the Langevin
equation equivalent to Eq. (1).

—ln(Pss'"'e ' ) (13)

exp -u

k T F. g -E, 'kt' '
(n+1)yJ, rrkT

Equations (ll)-(13) lead after some algebra to an
equation for the matching energy F-,:

which has a solution 0&E, & E~ (see Fig. 2). We
note again that the importance of determining the
proper matching point stems from the fact that
the solution (6) fails near the barrier top while
(8} fails near the bottom so that these functions
are expected to overlap only in a limited range
near E,.

The SS rate is obtained by dividing the current
[(7}or (10)] by the total number of particles N

Pss in the well. Here we adopt the follow-
ing approximate expression for hf:

N = j d~P„~"&(~)+J „'dxj dvP„~'&(x, v)e(-,'mv'+ V(x) -E,), (15)

where 8(x}= 0 for x - 0 and 9(x}= 1 otherwise. The approximation lies in using P»~ to calculate the
contribution from the phase-space region (E )E„x&x,). This may be justified for deep wells by notic-
ing that for large y this part of phase space is described well by P ss' ' while for small y its contribu-
tion is negligible relative to that from E &E,. As a further approximation we may (for similar reasons)
replace Pss in the second contribution to N in (15) by PBD, the limiting Boltzmann distribution ob-
tained from (6) or (8) for y-™.This leads io

dJexp --- +A, dJexp — -- dJ, exp (16)

By use of (7), (9), (11), (12), and (16) [Eq. (15) could be used instead of (16) for a slightly more ac-
curate but less transparent result], we finally get (erf is the error function}

1+erf([(++1)(Z, -E,)/sr ]~')
y—

2 +T~)

where rK is the Kramers rate given by Eq. (3) and where

|,= b k T ) 'f ' dJ exp
u)(J) z(J)

0
dJ' exp— (18)
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is just the mean first passage time to reach from
4=0 to J= J,. To obtain this result we have used

J dJ exp[ -E(A, 'k T] tr T!u!, and have trans-
formed the double integral of Eq. (16) to the form
in (18) by using integration by parts.

For large y, E, -0 (Fig. 2) and r, -0. At the
same time the error function in (17) becomes 1

and ~- vK which behaves as y
' for y- ~. For

Ej & p and Ty T g Tg &
the mean first

passage time to reach the barrier energy [in a
dynamics described by Eq. (5) J, becomes the
dominant contribution in (17) and r- r~ . It is
easy to show"' that in this limit T~

' is given
(for a truncated harmonic oscillator) by Eq. (2b).
The dependence of r, Eq. (17), on y is displayed
in Fig. 2, To produce this graph we have used
the potential V(x} = D [exp(-.i.!a) —exp(-x/b) J'
shown in Fig. 1, where we chose a/b= 20 (lead-
ing to E~/&=0. 658 and ~o/e~ =5.236). Also
shown in Fig. 2 are results of numerical simula-
tions based on the Langevin equation

mx'+d V(.i)/dx + ~ =R(t);

(R ) = 0, (R (0)R(t ) ) = 2yrrlk T b(t ),
which is equivalent to Eq. (1}. Excellent agree-
ment with the analytical results is obtained.

%e see, as intuitively expected, that deviations
from TST are larger for shallower wells, and

that low-friction behavior (operationally defined
as the range where r increases with y) is ex-
pected for y/& o&10 '-10 2 depending on the
well depth. %e note that the present derivation
is valid for a single-well model. For double
well, the small-y behavior is affected also by
trajectories returning from the second well. '

The result (17} [with Eq. (14) for E,] provides,

for the first time, a derived expression for the
SS escape rate in the Kramers model valid for
all 0 - y - ~. The Kramers theory has been re-
cently extended to include memory effects in the
particle-thermal-bath interaction [ generalizing
sepa~ nteti. ' the Kramers equations (2b)' and (3}'].
Extending the present theory to the non-Markoff-
ian case will be the subject of a future publica-
tion, '
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