Limits on $n - \overline{n}$ Oscillations

^A recent paper' reported an upper limit of 0.⁷ A recent paper reported an upper timit of $v \cdot n$
× 10⁻³⁰ yr⁻¹ for the rate of $n - \overline{n}$ transitions² in oxygen nuclei and deduced a corresponding lower limit of 2×10^7 s for the free-neutron oscillation time, by use of a relation taken from Dover, Gal, and Richard.³ This is the latest in a series of papers (Refs. 11-17of Ref. 1) which reflect the prevalent view that there is a direct relation between the $n - \overline{n}$ transition rates for free neutrons and for those inside a nucleus. This had led to the unjustified interpretation that improved tests of nuclear stability automatically lead to correspondingly lower bounds for free $n - \overline{n}$ transition times. The purpose of this Comment is to rectify that mistaken impression and to emphasize the continuing need for refined experiments on $n + \overline{n}$ transitions using unbound neutrons. '

The time evolution of a "neutron" wave function Ψ is governed, in its rest system, by the equation (with $\hbar = c = 1$)

$$
\frac{i\partial \Psi}{\partial t} = M\Psi; \quad \Psi = \begin{pmatrix} \psi_n \\ \psi_{\overline{n}} \end{pmatrix},
$$

$$
M = \begin{pmatrix} m_n + V_n & \epsilon \\ \epsilon & m_n + V_{\overline{n}} \end{pmatrix},
$$
 (1)

where m_n is the mass of a free neutron (required to be the same as that of a free antineutron by TCP invariance) and ϵ is a parameter describing the strength of $n - \overline{n}$ and $\overline{n} - n$ transitions (assumed to be equal by time-reversal invariance). V_n is the potential experienced by a neutron, while $V_{\overline{n}} = U_n - iW_n$ is the corresponding complex potential experienced by an antineutron; to simplify the discussion, we take these to be constants⁵ characteristic of nuclear matter. Diagonalization of M yields two complex eigenvalues with corresponding eigenstates which must be interpreted as the states of a neutron and an antineutron, respectively, inside nuclear matter. The width (decay rate) of the longer-lived "neutron" state is given, for $\left| \epsilon \right| \ll |V_n - V_{\overline{n}}|$, by

$$
\Gamma = 2\epsilon^2 \{ W_n / [(U_n - V_n)^2 + W_n^2] \}.
$$
 (2)

If the curly-bracketed ' nuclear physics" factors are taken as known,^{6} Eq. (2) provides a direct connection between the rate of disappearance of neutrons within nuclear matter and the $n + \overline{n}$ oscillation time $\tau_{n\bar{n}} = \epsilon^{-1}$, provided that the ϵ which appears in Eq. (2) can be taken to be the same as ϵ_0 , the corresponding quantity for an isolated neutron. Consequently, experimental limits on nu-

clear stability restrict the admissible value of ϵ but do not constrain the value of the free-neutron oscillation time ϵ_0^{-1} unless $\epsilon_m = \epsilon - \epsilon_0$ can be shown to be negligible in comparison to ϵ_0 . The value of ϵ_0 is a matter of speculation; any assertion about its magnitude relative to ϵ_m —which represents all $n \rightarrow \overline{n}$ transition processes⁷ which could be catalyzed in the presence of other nucle ons, but which are forbidden for a single neutro

— is at least as speculative. Suffice it to say that ϵ_m and ϵ_0 are of the same order in the baryonnonconserving interactions and may be expected to be comparable in magnitude. Therefore, one should view the neuclear stability tests and searches for free-neutron transitions as furnishing complementary information on ϵ and ϵ_0 , respectively.

I thank M. S. Goodman and C.-Y. Wong for stimulating discussions and encouragment. This research is supported by the U. S. Department of Energy.

P. K. Kabir (a)

Jefferson Physical Laboratory Harvard University Cambridge, Massachusetts 02138

Received 1 June 1983

PACS numbers: 14.20 Dh, 13.85.Tp, 23.90.+w

 $^{(a)}$ On leave from the University of Virginia, Char.lottesville, Va. 22901.

¹M. L. Cherry et al., Phys. Rev. Lett. 50, 1354 (1983).

 ${}^{2}G$. W. Foster reported similar results from the Irvine-Michigan-Brookhaven experiment [Bull. Am. Phys. Soc. 28, 683 (1983)].

 ${}^{3}C.$ B. Dover, A. Gal, and J. M. Richard, Phys. Rev. D 27, 1090 (1983).

 ${}^{4}G$. Puglierin reported a preliminary lower limit of 10^6 s from an experiment at Institute Laue-Langevin, in Proceedings of the International Colloquium on Matter Nonconservation, Frascati, Italy, 1983 (to be published).

⁵The spatial variation of V_n and $V_{\overline{n}}$ in finite nuclei is readily taken into account, as for example in Ref. 3, and does not change the qualitative conclusions which follow.

⁶While known in principle from other experiments, in practice there is a considerable range in their estimated values [R. N. Mohapatra, in Proceedings of the Workshop on Neutron -Antineutron Oscillations, Cambridge, 1982, edited by M.S. Goodman, M. Machacek, and P. D. Miller (Harvard Univ. Press, Cambridge, Mass., 1983); G. T. Condo and C.-Y. Wong, private communications].

 N Mohapatra (Ref. 6) noted the possibility of additional $\Delta B = 2$ reactions in nuclei, but did not consider processes coherent with $n \rightarrow \overline{n}$ transformation.