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A new, dynamical model is presented which can explain the anomalously strong at-
tenuation reported for ballistic phonons propagating through the (001) inversion layer of
Si. The crux is an interference effect between phonon amplitudes backscattered from the
two-dimensional electron gas and amplitudes specularly reflected from the Si-Si02 inter-
face.

PACS numbers: 63.20.Kr, 66.70.+f, 73.40.Qv

Recently we reported experiments" employing
ballistic phonons propagating through the (001)
inversion layer of Si as a means of measuring
the electron-phonon interaction in a two-dimen-
sional electron gas. Surprisingly, the observed
attenuation of phonon intensity (ranging from l~jo

to 2/o) was an order of magnitude too large to be
explained by absorption. This puzzling result is
all the more fascinating in view of persistent
suspicions that the electron-phonon interaction
might be much larger in two dimensions (2D)
than in 3D.' In this Letter we develop a new
theory of phonon scattering and absorption for
the inversion layer which successfully accounts
for these observations in terms of the known elec-
tron-phonon coupling in 3D and dynamical proper-
ties of a 2D electron gas.

The experiments were conducted in a reflection
scheme (see Fig. 1); so in our original interpre-
tation" we used the simple model of absorption
of ballistic phonons passing twice through the in-
version layer, before and after specularly re-
flecting from the Si-SiO, interface. If the reflec-
tion were total, this might not be a bad approxi-
mation. But in the present ease the reflectance
is small' (r-4'//~) as 0 is close to the Brewster
angle, and as we shall see below the largest con-
tribution is an interference between the phonon
amplitude backscattered from the inversion layer
and the reflected primary beam. This term is
enhanced by roughly a factor of v ' '-5.

Our approach is to calculate the linear response
of the 2D electron gas to perturbations by the

phonons. The radiation fields thus set up are
contributed by both real and imaginary parts of
the complex density response function y(q, ~)
which relates the 2D electron density n, (x, y) to
a, perturbing potential (at wave vector q in the
plane and frequency e) which couples linearly to

n, (x, y). This is a dynamical theory whereas the
earlier one was "static" in the sense that it dealt
exclusively with Imp(q, ~) as an absorption mech-
anism.

Our first concern is to formulate the coupling
between the phonons and the 2D ~'ectron gas. We
shall regard the phonons classically as elastic
waves; the quantization plays no role whatsoever
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FIG. 1. Schematic representation of the experiment
(Refs. 1 and 2) showing the interface, the electron in-
version layer (shading), and the incident, reflected,
and transmitted phonons (LA and TA denote longitudinal
and transverse acoustic modes, respectively). The
I A intensity is largely transmitted as signified by
heavy lines.
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in the present situation. We adopt a coordinate
system shown in Fig. 1 in which z is normal to
the Si-SiO, interface (the oxide occupies the half
space z &0). It will be assumed that Si and SiO,
are both elastically isotropic. The coupling be-
tween phonons and electrons in the occupied [001]
valleys is given by an interaction Hamiltonian
containing the deformation potential' which acts
on the electron density n(r),

X'= J d'xn(r)[a(c„„+ e») +be„]. (1)

Here a and b are deformation-potential constants'
and e, , is the strain tensor 2 '(Bu;/sx, +au, /Bx;),
u being the displacement. There is no loss of
generality if we let the phonon wave vectors be
in the xz plane, whereupon e„=0. Next, we
assume that n(r) = n, (x, y)f (z), f(z) being the elec
tron probability density normal to the xy plane,
i.e., f (z) = f,'( z) where &,(z) is the wave function
of the lowest subband 0. Then by definition the
response to phonons can be expressed as a Four-
ier transform in the xy plane,

n(q, z)

= -f(z)Z(q, (u)Jdz'f (z ') [ae (q, z ')+ bz (q, z ')j, (2)

where ~ is the phonon frequency and q is the pro-
jection of the phonon wave vector in this plane.

The equations of motion for the displacement u
are

phd u+V '0'— 0, z)0
bJC'/bu, z «0 (3)

Solutions to (3) in the oxide (source-free) half
spa, ce are trivial (i.e., plane waves propagating
in the +z direction); but in the half space z «0
occupied by the electron gas, which acts as a
distributed source, they are not and in general
necessitate numerical methods. We have elected
instead to employ a simpler "slab" model where-
in the density is replaced by a rectangular pro-
file of thickness s and spaced a distance h from
the interface at z =0, i.e., f(z) =s '[0(z+k)
—0(z+8 —s)], where 0(z) is the unit step func-
tion. Now one finds solutions of the form

where p is the crystal density, o is the stress
tensor related to e in the usual way through the

elastic moduli (the elastic moduli a.nd density are
different in the two regions z &0 and z «0), and

the functional derivative 5X'/bu represents the

driving force due to the electrons, which from

(1) can be written

sn(r) bX sn(r)
Bx ' 5u, ~z

u = [A E; exp(tk(.z) +Aq 6q exp(tk~ z) +A E (exp -ik( z)+A„E„exp(- Ekg z)]e (5)

in each of the four regions z )0, 0)z ) -h +s,
-h+s)z) -h, and~A)z, with appropriate match-
ing conditions at t~ boundaries. The interface
at z =0 one treats as a standard Fresnel problem
for elastically dissimilar media with the usual
boundary conditions of continuity of o,„, o„, u„,
and M, . At the profile edges, z=-A and z =-h
+s, the displacements u„and u, are continuous,
but the stress tensor is not. One sees from (3)
and (4) that the discontinuities in f(z) require
discontinuities in o„, the magnitudes of which,
bn, (q)/s, follow from integration of (3) across
the boundaries. Similarly, the electron density
gives a contribution to o,„approximated by a dis-
continuity iaqn, (q)/2 at each profile edge. These
discontinuities represent sources of elastic radia-
tion due to oscillations in electron density. The
A, in (5) are field amplitudes, e, are unit polar-
ization vectors, and k, and k, are, respectively,
the normal components of the LA and TA wave
vectors.

Imposition of the aforementioned conditions at
the three boundaries results in a system of

twelve linear equations for the twelve (generally
complex) amplitudes A„.. . , A„(A, and A, a.re
the given incident LA and TA amplitudes, respec-
tively) to be solved simultaneously with Eq. (2)
[if we regard n, (q) as an "unknown" and assume
that g(q, e) is given]. Taking advantage'now of
the fact that perturbations are weak, one finds
that the system has an exact, yet relatively com-
pact, analytical solution (quoted here for brevity
in the limit s -0). For incident LA waves (A,
specified; A, = 0), the far-field (z « -k) LA ampli-
tude in reflection is

A, =-A, ex (p- i2k, )k+8„(A, —A, ) -g„A, , (6)

where A, and A, are the LA and TA amplitudes,
respectively, contributed by the electron layer,

A, = [ Bn2(q)/2pc, ' eos 0] exp(ik, k),

A, = [Cn, (q)/2pc, ' cos cp] exp(ik, k).

Here 6 =asin'P+b cos'0 and C =(a —b) sincpcosy;
n, (q) is the response (to zeroth order in u) and
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c„c,are the sound velocities for LA and TA waves, respectively. In (6) g„and p„are amplitude
reflection coefficients —l.e. , ratios of reflected amplitude to incident amplitude —in an obvious nota
tion. The fractional change in reflected intensity for I.A modes is

where &,' is the unperturbed amplitude and 5A, =A, -A, '. Substituting (6) and (7) into (8) we obtain the

final result (for limit s-0) to first order in )((q, &u),

B2 2B
[qlmgcos2k, k -qReg sim2k, k] —, .—— qimg

pc, 'cos8sin8 p 2cos6I s' g

+ R,q BC
[q imycos(k, -k, )k +qReg sin(k, —k, )k J

pc, cos@sln

[qIm icos(k, —k, )k + q Rel(sin(k, —k, )k]R«pc, 'cos 8 sing

+four terms of higher order in It', .

-3

o~ 2
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(b)

v oJ1' ReX

/kF q, /kF

A plot of bl(q)/I (all eight terms and finite s) is
shown in Fig. 2(a) for )((q, e) calculated for a non-

interacting electron gas' at 0 K [Fig. 2(b)].
Despite its complicated appearance (9) has a

straightforward interpretation: First, the inter-
ference we anticipated between waves radiated
from the 2D electron gas and waves reflected
from the Si-Sio, interface is evidenced by its
oscillatory nature depending upon arguments
which represent the phase difference, 4y= rp,~

Ep f ~, between the respective waves. Clearly
"absorption" is a misnomer; bf(q)/I could be
either positive or negative [see Fig. 2(a)] accord-
ing to the magnitude of 2h relative to an inverse

~ (perpendicular) phonon wave vector k '. Since 2k
~ 27th ' for all relevant k's, the oscillation is
limited to one cycle or less. If 2h were large,
bl(q)/& would appear as rapid oscillations modu-

lated by qImg and qReg. Second, in contradic-
tion to the static case where only Imp appears
to represent dissipation, it is seen that both Rex
and Imp appear in (9) in a mix depending upon by.
The inclusion of Beg, which is larger than Imp
[see Fig. 2(b)], gives an enhancement to bf(q)/1
as well as contributions beyond 2k~. Third, there
is a substantial enhancement, by )R« '~-5, of
the leading term (successive terms are grouped
in ascending order of number of reflections, i.e.,
in descending magnitude). The origin of each
term is identified in Fig. 3. The first, zeroth
order in reflection number, is from direct radia-
tion (wave 1) excited by the incident LA waves.
The next three terms are first order in reflection
number: The second is bona-fide absorption'
suffered by incident and reflected primary waves
(hence, the prefactor "2") in passage through the

electron layer (absorption is represented by inter-
ference of out-of-phase radiated waves 2 and 2'
with the primary waves). The third and fourth

terms involve TA waves mode converted at the

po

Imx

1

Si 02

q/kF
FIG. 2. (a) Predicted fractional change in reflected

intensity bf(q)/I for LA phonons of wave vector q in
the plane. Parameters used are p =2.33 g/cm3, c&
= 9.4 x 105 cm/sec, c& ——5.11 x 10 cm/sec, s =2ao, k

=4.5ao, 8), ———0.2, B,q
——0.15, and &q,

———0.1. Des-
ignated q's are q~ =2k &+2m /k, cwhere c=c&/sing
=ct /sing. (b) y(f, ~) for noninteracting electrons of
valley degeneracy g„=2, spin degeneracy g, =2, and

effective mass ~ =0.19~.
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FIG. 3. Identification of individual contributions to
~I(q) ji [cf. Eq. {9) in text].
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FIG. 4. (a) Profiles of &I/I for LA phonons in re-
flection obtained by the convolution of &I(q)/I [e.g. ,
Fig. 2(a)) with phonon distributions characterized by a
heater temperature T&. (b) Experimental data from
Ref. 2.

interface (waves 3 and 4, respectively). The
four omitted terms are second order in reflec-
tion number. All told, "true" absorption accounts
for only -10% of AI(q)/I, the remainder being a,

"reactive" response.
The experiments were performed with a sPec

trum of phonons, so that (9) must be convolved
with an appropriate distribution function. ' The
resulting profiles, plotted versus 2k& in Fig.
4(a), show good agreement with the data in the
main areas where accord was formerly lacking:
Most importantly, the calculated attenuation is
now of the right magnitude; even the range (1/o
to 2/p) is found to match roughly. Also there is
now much better agreement in the shapes, in par-
ticular the crossing of curves at small 2k F a.nd

the elevated tails of all profiles at large 24F.
[The latter are largely due to the added strength
at small q's as seen in Fig. 2(a). ] The only se-
rious discrepancy is that the curves are shifted
to higher 2k F values for reasons that are obscure
at this time. Experiments with monochromatic
phonons may be necessary to identify whether
the problem is in the theory or in our assump-

tions regarding the. phonon distributions.
The parameters used in the computations are

taken as "given" (see caption of Fig. 2) and not
adjusted. The only exceptions are the param-
eters s and h which because of their somewhat
artificial nature are not physically definable in a
precise way. We find that the profiles show rath-
er little dependence on s (if the midposition of
the layer at z = -h +s/2 is held fixed). On the
other hand, since interference is the major ef-
fect, the dependence on h is strong. If we write
it —s/2 = const xa, where a, is the variational
thickness parameter given by Eq. (3.30) of Ref. 3,
the best fit occurs when const = 3.5, rather close
to the variational first moment of z for the charge
density, z, =3a,.

In conclusion, the reconcilement of theory with
the observed magnitude of M/I demonstrates
that the strength of the electron-phonon interac-
tion in 2D does not differ greatly from that in
3D. Furthermore, with monochromatic phonons
it will be feasible under appropriate conditions
to do direct spectroscopy on the linear response
function y(q, &u) over a substantial region of q
and +, something that is otherwise fairly inac-
cessible. This might be particularly interesting
in the presence of a quantizing magnetic field.
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