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Dynamic Stability of a Doubly Diffusive System under Parametric Modulation
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The effect of modulating the temperature difference between the plates at the onset of
convection in a doubly diffusive system has been studied. Both Stern and Veronis con-
figurations show stabilization and destabilization depending on the modulation frequency,
in contrast with the behavior of single-component systems. The stability effects are
particularly pronounced in the Veronis configuration because of parametric resonance,

PACS numbers: 44.25.+ f

The response of a dynamical system to a peri-
odically modulated driving force" is receiving
much attention in the hydrodynamic context. "
For the Bayleigh-Bernard problem the effect of
periodic modulation of the temperature difference
between the plates is known to provide dynamic
stabilization and delay the onset of convection if
finite-size effects are ignored. ' The onset of
convective flow in double-diffusive systems,
which we study below, exhibits a far richer sta-
bility pattern. The possibility of the onset of an
oscillatory flow in the unmodulated system allows
for parametric resonance in the modulated one
and generally leads to an enhanced response of
the system. All the features to be discussed be-
low should be amenable to experimental verifica-
tion.

A double-diffusive system is characterized by
two different diffusivities usually those of heat
and the solute. The difference in diffusivities can
drive convection in the system even when it is
hydrostatically stable in the single-component
sense. The configuration where the temperature
and concentration (of the solute) both increase in
the upward direction is the Stern configuration, '
or the "fingering" regime, whereas the reverse
situation is known as the Veronis configuration, '
or the "diffusive" regime. The instability is sta-
tionary in the Stern configuration and nearly al-
ways oscillatory in the Veronis configuration.

To study the effect of periodic modulation in the
double-diffusive system, we assume that the con-
centration gradient is fixed while the temperature
of one of the plates is modulated with frequency

Her e we use the Lorenz-model-like truncation
of the full hydrodynamic equations proposed by
Veronis' and studied in detail by DaCosta, Knob-
ler, and Weiss. ' The use of the full hydrodynam-
ic equations leads to very similar answers. " Our
stability analysis is linear.

The truncation involves the following five Fou-
rier components: (i) X, the 101 component of

the velocity field in the vertical direction; (ii) Y,
the 101 component of the temperature field; (iii)
Z, the 002 component of the temperature field;
(iv) U, the 101 component of the concentration
field; (v) V, the 002 component of the concentra-
tion field.

The resulting differential equations can be writ-
ten in the form

X = o(- X+ Y+ U),

F= —XZ+ r,x- F,

Z=XV-bz,

0=XV- sw, X- Us,

V= Ux- so V.

(la)

(lb)

(ld)

(le)

Here o = v/D is the Prandti number, s =D, /D, r,
= ng(AT)d'/DvR„r2 = PgbT)d~/D, vR, . v is the
kinematic viscosity, D is the heat diffusion, D,
is the solutal diffusivity, n = —(1/p)sp/eT is the
thermal expansion coefficient, pi= (1/p)ep/eC, d
is the separation of the plates, g. = 27m'/4 is the
critical Bayleigh number for free boundaries, the
number b ranges between 1 and 4, and time is
measured in units of 2d'/3w'D

It can be readily verified from Eqs. (la)-(le) by
a linear stability analysis that the state of rest
(X= Y= Z= U= V=O) is destabilized to the follow-
ing: (i) a stationary state if

-1
(1+ s)(o+ s) (o+1)(1+s) (4)

Note that r, & 0 if the system is heated from be-
low, and r, & 0 if the concentration decreases up-
wards. Keeping this in mind, we see that in the

(ii) an oscillatory state, with frequency

so(1 —r, +r, )
co '=s+ a+ so.-~ a+r so.=0 1+s+ v

1 2 (2)
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Xi (
F, =

i
r, '"X,cos(ot

(U,'1 (' 0

(Va)

(Vb)

Stern configuration (r, & 0, r, & 0) the instability
is stationary, while in the Veronis configuration
(r, & 0, r, & 0) it is nearly always oscillatory.

We now study the effect of modulating the tem-
perature difference between the plates while hold-
ing the concentration difference fixed. This is
equivalent to a frequency modulation on the param-
eter r, in Eqs. (la)-(le). The modified forms of
Eqs. (la)-(le) are obtained by replacing t; by
r, (1+ ecos&ut) in Eq. (lb)." In the following we
will assume that e«1 and carry out a perturba-
tive analysis to find the change in F, up to g(e')
from its unperturbed value. For this purpose we
expand each mode A (g = X, 1; Z, U, V) as

A =A, +A, ~+A2~'+. .. (5)
and the Rayleigh number as

=y '(Oi + qy (6)

Clearly x, "' = 0 as the correction to the Bayleigh
number cannot depend on the sign of e. Inserting
the above expansions in the linearized versions
of Eqs. (la)-(le) and equating coefficients of like
powers of e, we obtain

too '"
" -2

We now discuss separately the Stern and Vero-
nis configurations.

(1) Stern configuration. —In this case the in-
stability is stationary (X„ lo, and U, are time
independent). The eorreetions X„F„and U,
due to modulation are time dependent and can be
obtained from Eq. (Vb) as

Xi = Xooxi —

2 2
— COS Cu

„) S1., + Col.2
'+

2

where

(9)

FIG. 1. Leading correction z~~ & to the thermal
Hayleigh number as a function of the modulating fre-
quency for the stationary instability (Stern configura-
tion). Negative and positive values of z&| i imply dy-
namic destabilization and stabilization, respectively.

(x~ ( 0
r, '"x,+r, '"x,

cosset,

(U/ ( 0 j
where I. is the matrix

(Ve)
and

l., = —(d'(I+ s+ a)

I., = —(d'+ s+ a+ scr- o(r, '0' —r, s).

(10)

8/Bt + a
s/st+1

sr, 0 8/Bt+ s )

We have used ~, '" —@2=1. Turning now to Eq.
(Vc), we note that for consistency the time-aver-
aged part of the right-hand side has to be orthog-
onal to the solution of Eq. (Va), and hence

«, (X, eos~t) (r, "')' s(1+ s+ o) —[s+ o+ sa —o(r, '" —r s) —ri']
X, 2 uP[1+ s+ a]'+ [a+ s+ so o(r, '" —r—,s) —

afar

(12)

In Fig. 1, we show a plot of r, '" vs ( for o.=10, s =10 ' (solutal diffusivity is usually much smaller
than thermal diffusivity), r, '"=-1, and r, = —2. Note that r, '" &0 for ( &(air, i)'i' (approximately).
This implies that in this frequency range the upper plate has to be taken to a higher temperature for
convection to occur. This is in effect a destabilization because the stability of the system is supposed
to increase as the temperature of the upper plate is increased.

(2) Veronis configuration. —Here we consider the case where the instability is oscillatory and assum-
ing that X,=RE,exp(i~, t), we obtain from Eq. (Vb) the particular integral

Z()) =He . 'e A, —' .— exp[)(e, + e))j +(te-- e)),ar, '" i(~, + ~)+ s
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where

I„=(1+ o+ s)[0)02- (&u+ &u0)2], 12= (&u0+ ~)[(o02- (&u0+ &u)2].

The above solution is valid for ~ away from the parametric resonance at (ro 2c00.
At 0) =20)„we cannot set r, "' =0 a priori and Eq. (7b) needs to be written as

(xi o
L yl rl (1)Xo+ rl (0) Xocos Nt

(14)

(15)

With X0 @0cos400t, the consistency condition now yields

(l ) 1 (0)Y+l ~

Inserting this value of r, "' in Eq. (15), we obtain

cr, '" s+ 3&~,x, =pe ' A, , ', exp(pi~, i)),+ 2

with I ' = —8&u02(1+ o+s) and I., '= —24~02.
The second-order correction r, '" can be obtained from Eq. (7c) (for the case &v=2(0„r, "' terms

have to be included here) by imposing the consistency condition. We find

(17)

o(r (0) )2

(2)
1

o(r (0) )2

32 co0

(&u —0)0)'+ s(1+ o+ s)
[( )2 ( )2] [( )2

+ ((d - (o) for ~(i) -' (i)
~

)
~

(d

9 (d,'+ s(1 + o+ s) r, ' '
, + for l~- 2&v,

l
=Q (~(,).1+0+ s)'+ 9cu0'

(18)

The above effects could be experimentally tested on thermohaline solutions. The fluid mixtures
should show similar qualitative behavior and may be the preferable system for experimental purposes.
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In making this replacement, we are ignoring the dependence of the basic temperature in the fluid upon the fre-

quency, At high frequencies the error is small; at moderate frequencies our results are expected to be qualitatively
correct.
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