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Large-Order Perturbation Theory in'the Stark-Zeeman Effect for Parallel Fields
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For the ground-state hydrogen atom in parallel electric and magnetic fields the coef-
ficients in the double perturbation series are calculated to large order and certain as-
ymptotic recurrences are stated. With use of only the real coefficients, the complex
energy eigenvalue is obtained as a function of both field strengths by rational approxi-
mant methods. This represents the first application of two-variable approximants to the
calculation of eigenvalues for a physical system.

PACS numbers: 32.60.+ i, 31.15.+q
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Over the last several years, rapid progress has
been made in summing strongly divergent pertur-
bation series, in large part because of interest in
renormal. izable field theories. For the particu-
lar cases of the hydrogenic Stark and Zeeman
problems, ' the energy expansions are available
to large order' ' and are summable by either
Borel" or Pade"" methods. We report the
first extension of rational. approximant techniques
to the more complicated case of the hydrogen
atom in parallel electric and magnetic fields,
wherein summation of a double Taylor series is
required. Numerical analytic continuation of the
rationally summed perturbation series for the
ground state is shown to yield a resonance posi-
tion and width associated with Stark tunneling
along the common field axis. Additionally, we
state some empirical asymptotic recurrences
between the perturbation coefficients (along the
lines of Bender-Wu formulas'"").

The wave function and energy were obtained
order by order by transforming the inhomogen-
eous differential perturbation equations into dif-
ference equations. (The basic idea here is not
new, "~but several of the details are. ) The Ham-
iltonian (in atomic units) for the electric field F
and the magnetic field y both in the ~ direction is

H =- 2V + &yI +&y p +Fr -x (1)

where p = (x'+y')' '. The value y =1 corresponds
to a magnetic field of 2.35&10'G, and F =1 to
an electric field of 5.14&&10' V/cm. The Hamil-
tonian, energy, and wave function may al.l be ex-
panded in the powers F'(y'/8)', and, on close
examination, it becomes apparent that the struc-
ture of the resulting 4'"", including al. l contribu-
tions from the continuum automatically, can be
written in definite form. Eventuall. y, we find

E{i,j,k)
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The limits in these sums are given by

M(i, j)= j+I -',ij,

(4)

(5)

v (i, j, k)

2M(i, j)+i-k, 0 &k &j,
2M(i, j)+i+j -2k, j &k &M(i,j ).

By inserting these results into the perturbation
equation of order (i, j), a linear system of inho-
mogeneous equations is obtained between the en-
ergy and the set of c»'"" for this order. This
system of equations is not only triangular, but
sparse as wel. l, and so can be easily programmed.

The resulting energy expansion is of the form

g (m, n)yam(y2/8)n
m=0 n =0

(7)

We have calculated the &' "' out to rn, n =10 in
single-precision arithmetic (retaining at worst
about 11 significant figures out of 15 on a Cyber
720) and out to rn, n = 8 in double precision. The
results for rgg, n & 5 (obtainable in principle as
ratios of integers) are given in Table I. The num-
bers for n= 0 (pure Stark) and for m=0 (pure
Zeeman) have been checked with the known re-
sults. ' ' Of the cross terms, ~""and ~""have
been checked against the calculations of Lambin,
Van Hay, and Kartheuser. " Note that &' "' has
the consistent phase (-)"", independent of rn.

The ability to cal.cul. ate the perturbation coeffi-
cients to high order for the single-field cases
has kindled a strong interest in their asymptotic

where ~ =0 (1) for i even (odd), and S'"" is a fi-
nite polynomial in x and p'.

N(i, j j
S(iIj)i(r p) Q p2k f (i~ j)(r)

k=o
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TABLE I. The s& ' "~, as defined by Eq. (7), for m, n-5. The number inparentheses is the power of 10 by which
the entry is multiplied.

pz n

—5.ooo ooo ooo oooo(- 1)
2.000 000 000 0000

—1.766 666 666 6667(+ 1)
6.201 ill 111 1 ill(+ 2)

—3.995 8142592593(+ 4)

3.862 135590 4938(+ 6)
—2.250 000 000 0000

3.975 000 000 0000(+ 1)
—2.049 791 666 6667(+ 3)

1.717834 027 7778(+ 5)
—2.025 806 539 5139(+ 7)

3.161543545 S644(+ 9)

2 0
2 1
2 2
2 3
2 4
2 5
3 0
3 1
3 2
3 3
3 4
3 5

—5.554 68v 5oo oooo(+1)
3.9s3 6vl sv5 oooo(+3)

—4.178 190390 6250(+ 5)
5.860 781 407 5521(+7)

—1.054 805 236 9070(+10)
2.377 968 348 2567(+ 12)

—4.907 771 484 3750(+3)
V.191631 699 218S(+5)

—1.215 529 745 2050(+8)
2.512 104 570 5320(+10)

—6.350 659 614 9332(+12)
1.94V 69O 453 6922(+15)

0
1
2

3

5

0
1
2
3

5

—7.942 369264 5264(+ 5)

l.910936 574 4647(+ 8)
—4.696 729 842 5958(+ 10)

1.338 99V VV51365(+ 13)
—4.528 964 925 0725(+ 15}

1.817 103 747 2195(+18)
—1.945 3196O4 665O(+ 8)

6.904 891276 2458(+ 10)
—2.326 311127 2397(+ 13)

8.773 893 799 2619(+15)
—3.838 879 188 1669(+18)

1.95V 39194885OS(+21)

natures (see, e.g. , Ref. 9). From examination of
the &' '"' for m +2, n ~20 and m &20, n & 2, we
conjecture the following asymptotic reeurrenees:

&'/s '~ ~ &~ = ( 2 )22m(2m + 4n l)
m»0, n=0, (8)

"'/s'"" "=—(8/~')2n(2n+ em),
n»0, m=0. (9)

As is easily verified, Eqs. (8) and (9) are con-
sistent with the Bender-Wu formulas for the
Stark' and Zeeman'" problems, respectivel. y.
Further information along these l,ines should be
obtainable if the coefficients can be calculated to
higher order. A theoretical derivation of the
precise asymptotic nature of the &' '"' woul. d prove
more challenging.

Once the energy coefficients have been obtained,
they can be used to form various generalizations
of Pade approximants" (PA's) to two variables.
The choice made here is the Chisholm approxl. -
mant (CA),"

[m/m]

a gx y~ b„,x"y', 10

which has the felicitous property of reducing to
the appropriate PA whenever one of the variables
vanishes. Determination of the a's and b's re-
quires all of the &""for i„j~2m. Thus it was
possible to form up to the [5/5] CA. The results
of using the [4/4] and [5/5] CA's are compared
for select values of F and y in Table II, indi-
cating tha. t this is indeed a reliable way of sum-
ming the double asymptotic series. For strong

TABLE II. The CA's of Eq. (10) for different va1ues
of I and y.

Chisholm approximants
t4/'4&

0.0
0.0
0.0
0.04
0.04
Q. 04
0.02
0.06
0.10
O. 02
0.06
0.10

0.2
0.6
1.0
0.2
0.6
1.0
0.0
0.0
0.0
0.4
0.4
0 4

—0.4904
—0.4278
—0.3392
—0.4938
—0.4310
—0.3480
—0.5009
—0.5084
—0.5801
—o.4654
—0.4711
—0.4828

—0.4904
—0.4277
—0.3367
—0.4938
—0.4323
—0.3539
—0.5009
—0.5099
—0.5396
—0.4653
—0.4718
—0.4712

—0.4904
—0.4275
—0.3312

0 0 ~

—O. 5009
—O. 5092
—0.5274

'Galindo and Pasqual (Ref. 5}.
Benassi et al. (Ref. 12).

enough fields, of course, the [5/5] CA also be-
comes ineffective. This can be gauged by the
accurate resul. ts, also listed, for the pure Stark
positions and Zeeman energies.

In the Zeeman limit, the resulting PA's are
known to converge (although slowly') to the cor-
rect bound-state eigenvalue. It was initially
hoped that, in the Stark limit, the PA's for the
real. perturbation series would correspondingly
converge to the resonance positions. " Bein-
hardt" has pointed out that one only gets quasi-
convergence in this case because the poles and
zeros of the (diagonal) PA's al.l l.ie along the real.
I' axis, eventually spoiling the convergence. He
further showed that there are at l.east two meth-
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IO.

-3
lo

TABLE III. Location of the zeros and poles of the
t5/5] CA as a function of F for y = 0.2. The number
in parentheses is the power of 10 by which the entry
is multiplied.

Zeros Poles

r
IO

2

-5
IO

F = 1.190 0128(- 3)
2.700 6377(- 3)
6.874 7238(- 3)
2.888 6628(- 2)

—9.037 2871(- 1)

F2 = 1.190 0128(- 3)
2.700 6186(-3)
6.867 3071(-3)
2.770 3849(- 2)
6.602 2341(- 1)

IO
0.05 0.05 0.07

F (au)
0.09 0, II

FIG. 1. Resonance width I'/2 vs E for y=0.0, 0.1,
and 0.2. The dots are the accurate values obtained
from the complex coordinate calculations which agree
with Benassi and Greschi's results for y=0.0.

ods which not only avoid this problem, but ob-
tain the comp/ex Stark eigenvalues using as in-
put only the &e«perturbation coeff icients. In
one of the methods, the Stark PA's were evalu-
ated at several points in the complex I' plane
(away from the zeros and poles), followed by
numerical analytic continuation (via continued
fractions") back to the real axis. Although this
procedure is not systematic, it performs rea-
sonably well in obtaining the complex eigenvalue
and may be carried over directly to the parallel-
fields case by using C$'s rather than PA's."
Results for the imaginary part of the energy ob-
tained with the [5,5] CA are shown in Fig. 1.
For comparison, we have also calculated accu-
rate values by the complex coordinate method, "
verifying the perturbation results. It is apparent
from Fig. 1 that the effect of these sizable mag-
netic fields is to decrease the width of the reso-
nance.

In order to avoid inadvertantl. y evaluating the
approximants near singular points, we have ex-
amined the positions of the zeros and poles as
either field is varied with the other fixed. Ta-
ble III lists the [5,5] zeros and poles (in the
variables F') for a value of y used in Fig. 1.
The strong overlappings of the smal. l-F' values
are increasingly disrupted as y is increased,
eventually leading to the appearance of complex
zeros and poles. Similar results occur as a
function of y' for fixed I'.

Thus it has been demonstrated that the complex
energies for the hydrogen atom in parallel elec-

tric and magnetic fields can be evaluated by a
combination of perturbation theory and rational
approximant techniques. The current method
for obtaining the &' '"' could probably be coerced
into yielding at least a few more orders of the
energy for the same number of orders of the
wave function by a generalization of Wigner's
"2n+ 1 rule"" to double perturbation theory. A1.-
ternative approaches which may be more efficient
are logarithmic perturbation theory (discussed
briefly for the present problem by Turbiner'~),
or a generalization of the hypervirial-perturba-
tion technique4 to the double perturbation problem.
Also, the SO(4, 2) algebraic methods, which yield
the same results as the procedure used here,
may be more suitable in considering higher
states. ' The success of the current approach
suggests that these generalizations may be tracta-
ble.
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