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Atmospheric Neutrinos, Astrophysical Neutrons, and Proton-Decay Experiments
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Simple analytical estimates of the Quxes of atmospheric muons and neutrinos are pre-
sented. It is shown that the geomagnetic field strongly suppresses the fluxes of atmos-
pheric neutrinos beIow 1 GeV from directions of low magnetic latitudes and may open a
window for neutrino astronomy. The validity of these estimates is demonstrated through
indirect tests.

PACS numbers: 94.40.Te, 13.15.-f, 13.85.

If proton decay' is ever discovered it will have
important and profound implications for the phys-
ical understanding of the universe and its evolu-
tion. An experimental proof of proton decay re-
quires the detection of a signal that is clearly
different from that of background events. ' These
background events in the massive tracking calo-
rimeters used deep underground to detect proton
decay are believed' to be due to atmospheric
neutrinos (mainly v„'s and v, 's from the decays
of &'s, E's, and p,'s produced in cosmic-ray-in-
duced air showers). However, the same cosmic
rays that produce atmospheric neutrinos also
produce neutrinos when they propagate through
matter that may be near the sources of the cos-
mic rays (e.g. , ejected or falling matter around
supernovae, pulsars, galactic nuclei, quasars,
and black holes) and through interstellar matter. ~

If there are significant fluxes of such astronom-
ical neutrinos they should be seen by the proton-
decay detectors, in particular in directions of
low magnetic latitude where the Earth's magnetic
field strongly suppresses the primary cosmic-
ray flux that reaches the atmosphere and pro-
duces atmospheric neutrinos.

In this paper I derive simple analytical formu-
las for the fluxes of atmospheric muons and neu-
trinos which display explicitly their dependence
on energy, zenith angle, and geomagnetic cutoff
(which depends on geographic location, zenith,
and azimuth). If the v background in proton-de-
cay experiments is due to atmospheric v's, it
should exhibit these dependences and in particu-
lar a significant asymmetry between the total
fluxes of up-going and down-going v's at all the
sites of the major proton-decay experiments,
which results from the strong geomagnetic sup-
pression of the v fluxes from directions of low
magnetic latitudes. The reliability of the pre-
dictions is demonstrated by showing that (i) the

predicted spectra of atmospheric &'s and p, 's,
which are the main source of low-energy atmos-
pheric v's, agree well with the measured spectra,

Tp, 95.85.Qx

and (ii) the predicted v fluxes agree very well
with previous numerical estimates of these flux-
es in the absence of geomagnetic effects. '

The differential. fluxes of leptons, I = p., v,
from M-pv decays are related to the differential
fluxes of their parent mesons, M =&', K', through

where (jn —= m~ /(ma mp ) and pn —= 11fg /m p

Equations (1) and (2) are valid for energies that
satisfy ma'/E'«1. The differential fluxes of the
parent mesons (i.e., the mesons that decayed
into the respective leptons and photons), which
are produced by a primary flux of dP~/dE =cE ~

nucleons/cm' sec sr GeV at the top of the atmos-
phere, can be easily estimated if one assumes
that the cross sections for inclusive production
of hadrons in nucleon-air-nucleus collisions
obey Feynman scaling: dn„/dx =f„(x); h =N, M,
where N denotes either a proton or a neutron
and f„depends on x, the fraction of the momen-
tum of the projectile carried by the produced
hadron h, and not on energy. They are given by'

at dI'.
dE $ +g~E dE

In Eq. (3) B~ is the branching ratio for the decay
M- p, v (B,=1, Bs=0.632) and y~

'—= m„ck, sec8/
T~ where T„ is the proper lifetime of M,
= 6.3 km is the scale parameter of the upper
atmosphere, and 9 is the zenith angle of the inci-
dent cosmic-ray particle. The production coeffi-
cients g„"=-g„/(1-gn), where g„= J~ x 'f„(x)
dx, were calculated by I iland' from accelerator
data on inclusive production of hadrons in p-
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hydhoge+ collisions. (They display expIicitIy the
approach to scaling with increasing energy. ) Be-
cause of the nuclear enhancement of the multi-
plicity they have to be multiplied by an effective
factor of approximately 1.15 when applied to p-
air -nuclei collisions.

When Eq. (3) is substituted into Eqs. (1) and (2)
we find that

(4)

10'=—

10 s=

10-' =—

8=7S

I I I I I I II I I I I I I II

&~e- o-

h

d+p/dE =z gN "&NoMlKN(E) KM-(~ME)],

where K„(E)—= cE ~/[p+(p+1)y„E]. At low en-
ergies Eq. (5) has to be modified to include the
effects of p, decay and energy losses in the atmos-
phere. The energy losses are given approxi-
mately by p 'dE/dh =a-2.06 MeV cm'/gm; con-
sequently muons at zenith angle 9 with energy E
at sea level (final atmospheric depth A. ~ —= 1030
x secII gm/cm') are born with initial energy E,
which is given approximately by E, = E+ n(A, ~
-Ao). Their average energy E in the atmosphere
is E =E+ n(A. ~—-A.,)/2 and their probability to
reach sea level before decay is given approxi-
mately by' S„(E)= (X,/A ~)' ~v, where A., =120
gm/cm' and y„' m„ch=-, sec 6/ „7=1.04 GeV.
Equation (5) corrected for p decay and energy
losses in the atmosphere yields for sea-level
muons

dE„/dE

—=g g„"B„nS„(E)[K„(E) -K„(P„E,)], (6)

where g„" are evaluated at energy Eo. In Fig. 1,
Eq. (6) is compared with measured fluxes of sea
level p.'s at zenith angles 9=0' and 0=75"
under the assumption of a primary cosmic-ray
flux" of 1.6E '6' nucleons/cm' sec sr GeV.
Figure 1 demonstrates excellent agreement be-
tween theory and experiment.

The v spectra from p, —e v, v „are given by
standard weak-interaction theory (to distinguish
this v flux from F„ the v flux due to M-pv de-
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FIG. 1, &omparison between the present theoretical
predictions and measured Quxes of sea-level muons at
zenith angles 0=0' and 0=75'.

cays I denote it by I„):

= j d J g a,x'5(E-xE. „) " dE„, (7)
s=0

where A = (+, 0, -3, ~) for v„'s and A = (2, 0, -6, 4)
for v, 's and where I have neglected small cor-
rections due to the p polarization. The prob-
ability that a muon will decay iiif light is given
approximately by D„(E) = 1 —S„(E)=" 6/(5+@„E),
where 6=in(X~/A. ,). Equations (6) and (7) yield
then the following v fluxes produced by p. decays
in the atmosphere:

6A,. cZ '
Z Rw Mghf ( IM )

E~ ( II+ E) (8)

where p;-=p+i. Note that the v fluxes from g de-
cays depend on zenith angle through the depen-
dence of ~ and y„on zenith angle. Figures 2

and 3 compare the analytical estimates as given
by Eqs. (4) and (8) for the total fluxes of atmos-
pheric v&'s+v„'s and v, 's+v, 's in the absence
of geomagnetic effects (full lines) and the num-

erical estimates of these fluxes by Volkova. '
The figures demonstrate excellent agreement be-
tween these simple analytical formulas and the
numerical estimates of Volkova. '

The Earth's magnetic field prevents primary
cosmic rays with energy below the geomagnetic
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FIG. 2. Predicted fluxes of atmospheric v&'s+v&'s

from meson and muon decays at the sites of the major
proton-decay experiments.
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FIG. 3. Predicted fluxes of atmospheric v 's+v 's
from muon decays at the sites of the major proton-
decay experiments.

cutoff energy E, from reaching the atmosphere. For primary protons, the cutoff energy E, =(p, '
+ m2')' ' is given approximately by the Stormer formula:

p, =59.4cos (A/R')[1+(1-cos'Asin8siny) ' j' GeV/c,

where A. is the magnetic latitude, 6I is the zenith angle, y is the azimuth measured clockwise from the

magnetic north, and R is the distance from the dipole center of Earth in units of Earth radii.
One can easily show that for a thick atmosphere and dn„/dx - const the effective flux of nucleons with

energies below E, that are produced in air showers is given by dE~/dE =—g~E, I~ '~/E. For the
choice dn„/dx -(1 -x) /x, I find that the atmospheric fluxes of mesons with energy below E, (i.e., x,
=E/E, & 1) are given by

r~ "(E.»~cE. '
(1 + g)R( 1 4) I. 1(xc t p) g()I 2(xc H t

G, (x, p) =-1/(p -1)x —3/p+3x/(p+1) -x /(p+2), G2(x) —= (l22- —lnx+3x -+2x + 2x')/x. (9)

In Eq. (9), G, is due to nulceons with energies above E, while G, is due to nucleons with energies be-
low E,. (Except for extremely low values of x„G,»g~G2. ) When we substitute Eq. (9) into Eq. (1)
we find that the atmospheric fluxes of v's obtained directly from M- p, v decays have the following form
at v energies below E,/c(„:

" —= );„"(c,)c„a„' ) + [ w, (t, z„)+g„w,(z„)1I,Bp —14

g, (pt z) =(1/z ])/(p I) +3lnz/p+3(1 z)/(p+1) (1-z')/2(p+2),

W2(z) =~2 -lnz/z -17/6z -3lnz+3z/2 —z /6,
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where z„=u„EjE, ( 1. Similar analytical ex-
pressions can be derived for the fluxes of atmos-
pheric p,'s from M- pv decays and for atmos-
pheric v„'s and v, 's from subsequent p,-ev, v„
decays.

Using these analytical formulas and the geo-
magnetic cutoffs that were calculated by Cooke"
I calculated the atmospheric v fluxes at the sites
of the major proton-decay experiments. I found
that the geomagnetic field strongly suppresses
the fluxes of atmospheric u's below I GeV from
directions of low magnetic latitudes (large geo-
magnetic cutoifs) and produces a strong asym-
metry between up-going (8 &90') and down-going
(8( 90') neutrinos: At the northern sites the
geomagnetic field has only a little effect on down-
going v's while it strongly suppresses the total
fluxes of up-going v's; the latter are approxi-
mately the same ((E,) =—8.5 GeV) at all the sites
including the Kolar gold field in India, where the
geomagnetic field strongly suppresses also the
total flux of down-going v's ((E,)-15.45 GeV).
In Figs. 2 and 3 the present results are shown
for the Morton salt mine site in Ohio and the
Kolar gold field site in India. For reference I
also plot the v fluxes in the absence of a geomag-
netic field and the predicted flux of horizontal u's
(8= 90') from the east at the Kolar gold field (E,
= 54.5 GeV). Since &„-E„, the ratio of v inter-
actions by up-going and down-going v's is given
by the ratio of JE(dF„/dE)dE dQ for 8)90' and
8&90 . For a threshold visible v energy between
0.2 to 0.3 GeV this ratio for the northern sites
is between 0.54+0.0V and 0.64+0.06, while it is
1.56+ 0.22 at the Kolar gold field in India.

In conclusion, if the v background in proton-
decay experiments is mainly due to atmospheric
neutrinos, it should exhibit the anticipated de-
pendences on zenith, azimuth, and geographic
location for both up-going and down-going v's.
For directions of low magnetic latitudes the geo-
magnetic cutoff strongly suppresses the fluxes
of atmospheric neutrinos and may open a window
for v astronomy with proton-decay detectors. Al-
though I believe that the present analytic model
predicts reasonably well the fluxes of atmospher-
ic v's, neither the analytic model nor Monte
Carlo codes (one-dimensional codes in particular)

can be sufficiently reliable to determine whether
or not neutrinos oscillate" by comparison of cal-
culated and measured fluxes of atmospheric v's,
because both calculations are only approximate,
because the uncertainties in the experimental in-
put data are large, and because the results at
low E„are very sensitive to the input and to the
approximations.
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