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The spin and statistics of solitons in the (2 +1)- and (3 + 1)-dimensional nonlinear o
models is considered. For the (2 +1)~dimensional case, there is the possibility of frac-
tional spin and exotic statistics; for 3+ 1 dimensions the usual spin-statistics relation is
demonstrated. The linking-number interpretation of the Hopf invariant and the use of

suspension considerably simplify the analysis.
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The existence of solitons in the (2 +1)-dimen-
sional O(3) nonlinear ¢ model, as first discussed
by Belavin and Polyakov,! is implied by the homo-
topy m,(s,)=2. The model is described by the
functional

E=Jax(1/2f) 0,72, i=1,2 a=1,2,3, (1)

giving the energy of a static configuration speci-
fied by #%(X). The “order parameter” n® is a
three-dimensional unit vector: »n%»?=1, If we
describe the ground state by n(x)=(0, 0, 1), then
the basic soliton is described by

n(X) = (£ sinf, cosf). (2)

Here % =X/|X| denotes the two-dimensional unit
radial vector and f(» = |X|) is a function varying
smoothly and monotonically from £(0) =7 to f ()
=0 as 7 increases. We refer to such a topological
configuration as a skyrmion.? The topological
current in this model is

JH=(1/8m)ek” *e®n 3,n® 3,n°. (3)

The space-time indices y, v,... runover 0,1, 2,
One easily verifies the conservation of this, The
topological charge of this current,
Q=Jax o

=(1/87r)fd2x e”e"""n“ 3inb ajnc’ (4)
clearly describes the homotopy of the mapping
s, — s, for 1 satisfying the boundary condition A(X
=w)=const. The skyrmion has @=1. By using
Bogomolny’s inequality, one can solve exactly the
problem of minimizing the energy functional for
a given @. Finally, we mention that this model?
provides a phenomenological description of Heis-
enberg ferromagnets in a two-dimensional sys-
tem and thus the phenomena exhibited in this mod-
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el may conceivably be accessible experimentally,

In this paper we point out that the skyrmion
may possess fractional angular momentum and
obey peculiar quantum statistics. One of us had
previously proposed*™® the possibility of fraction-
al angular momentum and of statistics which are
neither Bose-Einstein nor Fermi-Dirac. As we
will see, the (2+1)-dimensional O(3) nonlinear o
model provides an amusing and explicit field~-
theoretic realization of these ideas. Our discus-
sion is also related to several other field-theo-
retic phenomena discovered in recent years.

The relevant mathematics which allows skyrmi-
ons to have these peculiar properties is the homo-
topy m,(s,) =2 [which is perhaps somewhat less
obvious than the homotopy 7,(s,) =z responsible
for the skyrmion’s existence]. It is easy to ex-
hibit the basic Hopf map of s, ~s,. In fact, phys-
icists should be familiar with this fact from ele-
mentary discussions of the Pauli matrices o°.
Define ¢ =z To®z where

()

z2
is a complex two-component spinor with the con-
straint |z, |2+ |z,|2=1. Notice that the U(1) trans-
formation z —e?®z leaves # invariant and so the
inverse image of any point on s, is a circle on s,.
What is not so obvious is the construction of a
Hopt invariant to describe m,(s,) [just as @ de-
scribes m,(s,)]. This will be explained below.

Let us first address the physical question of the
spin of the skyrmion. To determine the spin, we
rotate the skyrmion adiabatically through 27 over
a long time period 7. According to Feynman, at
the end of this rotation the wave function acquires
a phase factor e*S where S is the action corre-
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sponding to the adiabatic rotation. The angular
momentum J of the skyrmion is given by e?S
=gi2TJ,

Now, if S has simply the standard form [cf, Eq.
1]

So= Jdx(1/2f )%, (5)

then it is easy to see that S, is of order 1/7T~0
as T— o, The skyrmion has J =0, However, we
have not taken into account the possibility of in-
cluding in S a topological term. This possibility
is by now familiar from the discussion of the 8
vacua’ in quantum chromodynamics, from studies
of three-dimensional Yang-Mills theory and grav-
ity,® and from recent work of Witten® on strongly
interacting skyrmions!® (based on earlier work of
Wess and Zumino'!), In general, we can have S
=S,+60H where 6 is a real parameter and 4 is
the Hopf invariant which we now define.

The conservation of J # licenses us to manufac-
ture a “gauge potential” A * by the curl equation:

JHE=el o, A =5t (6)

A, is defined up to the gauge freedom A ,~A4

- 3,A. Note that A, depends nonlocally on 7°(x).
In the gauge 94 =0, we have A ,=-97%¢,,,9,J,.
[An alternative construction is to write A i

=iz70 2. The U(1) phase rotation on z induces
the gauge transformation on A ”.] The Hopt in-
variant is defined by

H= -(1/471)fd3x errrg WFux

=-@/2m)[@xA " M
H is obviously invariant under gauge transforma-
tion on A,. [We note that this is just the Abelian
version of the topological term studied by Deser,
Jackiw, and Templeton,® but since # is gauge in-
variant, 6 is not quantized. Furthermore, here
H is to be regarded as a functional of A(X). In the
language of Zumino, Wu, and Zee,'? # is propor-
tional to fw,’. If i denotes a four-dimensional in-
dex then apepp”XA pF,»;x:alzepp”xFﬂpF,;;\, connect-
ing the Hopf invariant to the chiral anomaly. ]
Spatial rotation of a single skrymion is equival-

ent to an isospin rotation and thus we evaluate #
for the time-varying configuration n, + ing,=e**®
X (72, +111,)(X), ny=#4(X). {Strictly speaking, this
defines a map of s,% [0,1]~s,.} It is not neces-
sary to know the explicit form of #,. From Eq.
(3) we find

J; == (1/8n)(da/dl)e;; o n,. (8)
It suffices to know that Jy(v)=¢;; 8,A; is a func-
tion of # to determine A; = - ¢;,x,£(r)/7* where

g(r)= [, dr'v'Jy(r’). This and Eq. (8) allow us to
determine A,=~-(da /dt)n,. Inserting into Eq. (7)
we find

H=g()ny(w) a(T) - a(0)]/27=1. 9)

The skyrmion has angular momentum 6 /2.

For a ferromagnet, 6 should be determined by
the microscopic theory underlying the phenomeno-
logical o model.

It is easy to show that # is a homotopic invari-
ant for s, ~s,. Consider a map with [(¥, ¢ = )
constant and a small deformation of i leaving in-
variant n(e). Then

B = € yy x 9, € e 212, OR° By 1°

=€yv)\av6A)\ (10)

and we find
8H=(~1/2m)2 [d®x 84 ,J *=0.

There is a deep theorem13 which equates the
Hopf invariant to the linking number between two
curves in K., To have a heuristic understanding
of this, consider the maps s;-s,. The reverse
image of a point in s, is a curve in s, which by a
stereographic projection we can think of as a
curve in R® (with « identified as one point). Thus,
for the basic map given explicitly above, n=(0,

0, 1) corresponds to the great circle |z,|=1, z,
=0 on s,, while n=(0, 0, - 1) corresponds to 2,
=0, k,[=1. Write the real components of (z,, z,)
as (cosy, siny cosd, siny sinf cos ¢, siny sinb sing)
and stereographically project this point to #(¥)

X (cos6, sinf cos @, sind sing) in R® where ()
ranges monotonically from « to 0 as ¥ ranges
from 0 to 7. We see that the curves correspond-
ing to n=(0,0,1) and to n=(0, 0, — 1) link once.
The reader may find it amusing to work out the
curves corresponding to other points,

Using this linking theorem, we can easily de-
termine the spin and statistics of a skyrmion,
Consider the following process in 2+ 1 dimen-
sions. At some time create a pair of skyrmion
and antiskyrmion and pull them apart. Rotate the
skyrmion through 27, Allow the pair to come to-
gether. Since at « we have the physical vacuum
this defines a map s, ~s,. Were the skyrmion not
rotated, the map would be homotopically trivial.
Here, the corresponding map has Hopt invariant
1. The two curves traced out by two specific val-
ues of i will be linked once as indicated in Fig. 1.

To determine the statistics obeyed by a skyrmi-
on we consider a process in which we create two
skyrmion-antiskyrmion pairs and subsequently
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FIG. 1. The creation and annihilation of a skyrmion-
antiskyrmion pair, with a 27 rotation of the skyrmion.

The two curves correspond to #=(0,0,1) and (1,0,0),
say.

bring them to annihilation but after interchanging
the two skyrmions. We see, by the maneuvering
indicated in Fig. 2, that the linking number is 1
for this process. The map of s, - s, correspond-
ing to this process therefore has Hopf invariant 1.
Thus, the skyrmion obeys exotic statistics which
interpolates continuously between Bose and Fermi
statistics as described in Ref, 6, (By the way,

the alternative of directly computing the Hopf in-
tegral corresponding to rotating a pair of skyrmi-
ons through 7 appears to be quite difficult,) Note
that the discussion there is for a gauge theory.
Here, we do not have a gauge theory but, curious-
ly, one can manufacture a gauge potential 4 .

Given a map f:s, - s, one can always construct'?
a map f:s,,, =S, (called the Freudenthal sus-
pension of ) by £ (£, (1 - £2)"2x) = (¢, (1 = £2)"?A(x))
where x& s, and £ & [0,1]. This induces a homo-
morphism'® F:7,(s,) - 7,,,(s,,,) of the homotopy
classes of f and f. Our discussion can thus be
“suspended” into (3 +1)-dimensional space-time:
m,(S,) = y(S,) =z and my(s,) - m,(s;)=2,. The first
of these is an isomorphism, the second is onto:
The suspension of a map s®—s? to a map s* - s°
is nontrivial if and only if the map has odd Hopf
invariant, Since s,=SU(2) manifold, the homotopy
m4(s,;) implies the existence of skyrmions in the
SU(2)®SU(2) nonlinear ¢ model. The fact that
7,(s;) = 2, allows one to quantize the skyrmion as
a spin-% fermion as discussed by Witten.® It is
consistent with the standard three-space angular
momentum analysis and with the well-known facts
m, 80(2))=2z and 7, (SO(3))= 2z, that 7,(s,) is z,
rather than z.

This material is based upon research supported
in part by the National Science Foundation under
Grant No. PHY77-27084, supplemented by funds
from the National Aeronautics and Space Admini-
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FIG. 2. (a) The creation and annihilation of two
skyrmion-antiskyrmion pairs. (b) The process in (a)
but with an interchange of the two skyrmions. (c) The
two curves in (b) after a homotopic deformation.

stration.
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