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Unitary representations of the infinite-parameter group Diff(R ) are presented which
describe particles with spin as well as tightly bound composite particles. These results
support the idea that Diff(P~) can serve as a "universal group" for quantum theory.
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This paper reports new findings concerning the
physics of unitary representations of the group of
diffeomorphisms of R' [Diff(R')]. We show that
such representations can describe quantum par-
ticles with various kinds of internal structure,
including particles with spin as well as composite
particles having dipole, quadrupole, and higher
multipole moments. We also present a heuristic
description of representations based on string and
loop configurations. Finally, we observe that the
notion of a gauge group has a natural expression
in this setting.

The infinite-parameter group Diff(R') arises in
physics in at least three distinct contexts: fluid
dynamics, general relativity, and quantum field
theory. Consider first the configurations of a
classical, compressible fluid. A diffeomorphism
describes the displacement of such a fluid from
a fixed initial configuration. Mathematically, it
is a mapping from a domain Q in R' to itself
which is one-to-one, onto, continuous, continu-
ously invertible, and infinitely differentiable.
Such mappings form a group under the operation
of composition. Thus the configuration space is
the infinite-dimensional manifold of Diff(&). The
tangent space to this manifold is the space of C
vector fields on 0 (velocity fields); the phase
space is the cotangent bundle T*(Diff(&)). For
incompressible fluids, one considers the group
s Diff(&) of volume-preserving diffeomorphisms,
and the tangent space of divergence-free velocity
fields. The dynamics of such fluids can be stud-
ied by means of noncanonical Poisson brackets,
satisfying the algebra of Lie brackets of vector
fields (see below). ' One is thus led to consider
the quantization of such structures by means of
unitary representations of the diffeomorphism

groups
Secondly, in the superspace" picture in gen-

eral relativity one considers metrics g~,. on a

spacelike three-dimensional manifold M, taking
as equivalent those which are related by a diffeo-
morphism. The diffeomorphism group thus plays
the role of a gauge group for the theory. In a
canonical approach to the quantization of gravity,
the state functionals on the space of three-metrics
would carry a representation of Diff(M) inter-
twining the representation of the canonical com-
mutation relations. Such representations could
thus illuminate our understanding of quantum
gravity. '

Third, consider a second-quantized nonrelativ-
istic field P(x, t) satisfying either canonical com-
mutation (-) or anticommutation (+) relations
[P(x),P*(y)],= 5(x —y) at equal times. In the Fock
representation of P, define the mass density p(x)
= m)*(x)g(x) and the momentum density

S(x) =(~/2&)(4 (x)[v4(x)] —[v4*(x)]4(x)~ ~

Consider the averaged operators p( f)= Jp(x)f(x)d'x
and J(g) =f5(x) g(x)d'~, wheref and the compo-
nents of g are C" functions of rapid decrease on
R' (Schwartz's space functions). These operators
satisfy the Lie algebra

[p(f,), p(f.)] =o,

[p(f), z(i)]=ihip(g vf),
[J(g,), ~(i~)] =~+~([g„g.]), (3

where [g„g,] = g, ~ Vg, —g, .Vg, is the Lie bracket
of the vector fields g, and g, . It is remarkable
that the same Lie algebra (1)—(3) occurs whether
one starts with commuting or anticommuting
fields. The group obtained by exponentiating the
current commutators is a semidirect product
SA Diff(R'), where g is Schwartz's space. For
y(x) E Diff(R'), the condition p(x) -x rapidly as
~x~ —~ is imposed which permits one to handle
certain otherwise difficult topological problems
associated with this group. If f„f,H& and p„p,
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E-Diff(R'), the group law is

(fi &i)(f2 &2) =(A+f.
Distinct unitary representations of S A Diff(R')
describe distinct physical systems; for example,
a system of N identical particles obeying Bose
statistics and a system of N identical particles
obeying Fermi statistics correspond to two par-
ticular unitarily inequivalent representations.
Because SA Diff(R') is an infinite-parameter
group, it is possible for its unitary representa-
tions to describe a very wide class of physical
situations. The gradual development of a repre-
sentation theory suitable for such infinite-param-
eter groups has allowed many of these descrip-
tions to be obtained. '

Next, let us introduce representations describ-
ing tightly bound composite quantum particles. ~

In the simplest case, the Hilbert- space consists
of square-integrable functions @(z,A.), where x
is the position coordinate and ~ the dipole mo-
ment coordinate. A unitary representation of
SA Diff(R') is given by U(f )V(y), where

(U(f )@)(z,i) = exp[i'. grad f(x)]+(z,i), (5)

(V(j)+)(x,i) = 4(p(x), 8 -(x)A) det8- (x), (6)
and where 8~(z),"=(8~@')(z) defines the Jacobian
matrix of p at x. To interpret this representa-
tion, we can compare it with a two-particle re-

!

presentation of SA Diff(R') for ordinary particles

of equal and opposite charge q:
(U(f)e) (x „z,)

p(C[f(,)-f( .)])e( „.), (7)

(y(P)g, ) (x„x,) = C (p(x, ), p(x, )). (8)

When the particle separations are smaO, so that
f and P vary slowly between x, and x„Eqs. (7)
and (8) approximate Eqs. (5) and (6) with 7
= q(x, -x,) and x=-', (x, + x,). Thus 4 (x, X ) is a
probability amplitude for finding a neutral parti-
cle at x with dipole moment p t 0. It is easy to
generalize Eqs. (5) and (6) to representations of
8 A Diff(R') describing N identical dipole particles
by taking symmetric or antisymmetric tensor
products.

Similarly, a quadrupole particle may be repre-
sented in the Hilbert space of square-integrable
functions @(x,X, Q), where the quadrupole moment
Q is a 3 x 3 symmetric tensor. For p E Diff(R ),
define p: (x, A. , Q)- (z', 7', Q') by

x' =y(x), (~')"= (&, y')(x)~'+-,'Q""(8 ~„y')(x),

summing over repeated indices. The configura-
tion space can now be partitioned into nine non-
trivial orbits under the action of Diff(R'), labeled
by the signs of the eigenvalues of Q. The quad-
rupole group representations are given by

(U(f)+)(x,i, Q) =exp iX'(s f)(x)+—Q "(& s„f)gx +(x,i, Q),

(V(y)+) (x,i, Q) =+(x', 7.', Q')[(dv'/dv)(x, i, Q)]"',
where v is a measure concentrated on one of the
orbits whose measure-zero sets are preserved by
the action of Diff(R'), v' is the measure trans-
formed by p, and d~'/dv is the Radon-Nikodym
derivative. Each orbit leads to a different repre-
sentation of S A Diff(R'). In analogy with the dipole
case, quadrupole representations af S A Diff(R')
approximate N-particle representations with N =3
or more, for scalar functions and diffeomor-
phisms varying slowly between the particles' spa-
tial coordinates. Thus, it seems physically
plausible to regard the multipole representations
given here as describing tightly bound composite
nonrelativistic particles.

Now let us introduce a way to obtain parti-
cles with spin by means of representations of
S A Diff(R'). ' For fixed x ER', we define a map
h, :Diff(R )-SL(3,R), where SL(3, R) is the

(IO)

group of real 3 x 3 matrices having determinant
1, given by h„-( p) = [det 8 ~ (x) ] '13 8 ~ (x) . Let I' be
a continuous path from infinity to x in R', then
hr (p) defines a continuous path from the identity
to h„(p) in SL(3, R). Such a path defines an ele-
ment of the universal covering group SS(3,R),
so we have a map h„-:Diff(R')-SZ(3, R). This
map can be used to induce representations of
SA Diff(R') from representations of SZ(3,R).
Let & be a continuous unitary representation of
SZ(3, R) in a Hilbert space. The desired repre-
sentation of SA Diff(R') acts in the Hilbert space
of square-integrable JR-valued functions on R' as
follows:

(U(f )@)(x)=exp[if(x)] +(x),

(V( p)e)(z) =w( h„-( p))4'( p(x))[ det8-„(x)]'". (12)

2247



VOLUME 51, NUMBER 25 PHYSICAL REVIEW LETTERS lg DECEMBER l983

Now w can be decomposed with respect to SU(2), which is the maximal compact subgroup of gZ(3, R).
Following the notation of Sijacki, ' let Z, and Z, represent the usual generators of SU(2) in SR, and let

@=-2,—1, 0, 1, 2, represent the quadrupole generators of SZ(3, R) in Sfi, , obeying T *=(-1)~T .
The representation n determines Z„Z„and T„. Define the functionals G„(g) as in Ref. 5.

The self-adjoint generators obtained from Eqs. (11)-(12)can now be written,

The self-adjoint generators obtained from Eqs. (11)-(12) can now be written,

(p(f )+) (z) =f (z)@(z),
2

(J(g)4)(x) = —.(g(z) ~ V+(z)+ V [g(x)+(x)]]+ ~ curlg(x) ~ (Z@)(x)+ 2 Q [G „(g)](z)(T„@)(z).
Z P=-2

(14)

The first term in Eq.. (14) describes orbital mo-
mentum density, the second describes spin mo-
mentum density, while the third is a spin-chang-
ing contribution which could occur for excited
states of nuclei, for supermultiplets of hadrons
lying on Regge trajectories, or in the presence
of a strong, nonuniform gravitational field. Al-
ternatively, one can construct from the foregoing
operators a class of operators called local rigid
rotations, " with respect to which the Hilbert
space decomposes into invariant subspaees of
fixed spin carrying representations of local
SU(2); i.e., on such a subspace, there is a natu-
ral representation of the group (& ISV) A Diff(R'),
where V is the group of C, SU(2)-valued functions
on R which tend rapidly toward the identity at in-
finity, and the group operation is pointwise mul-
tiplication. The self-adjoint generators of V' are
the spin density operators in the representation.

A continuous unitary representation of
& A Diff(R') is partially characterized by the set
4 of possible spatial configurations of the system
it describes. The spatial configurations are to
be thought of as generalized functions. For ex-
ample, a configuration of N identical particles
corresponds to P;=", 6„-,, where 5„- denotes a
& function centered at x. A dipole configuration
associated with Eqs. (5) and (6) is of the form
-A. ~ &„-~„-,while a quadrupole configuration is of
the form (-X.V;+ &Q "& &„)5„-. The action of a
diffeomorphism is to map one such configuration
in & to another. Associated with a representation
of SADiff(R') is a probability measure g on &,
allowing the outcome of an experiment to be ex-
pressed in terms of the probability that the con-
figuration is in a specified set. The measure-
zero sets of p are preserved under Diff(R'), and

a "wave function" is given by a function on &

square-integrable with respect to p .
Representations of & ADiff(R') have also been

constructed for which & is infinite dimensional.
For example, in the case of an infinite free Bose
gas, a configuration may be written Q;=, &(z,),
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!where (x&) is characterized by its average den-
sity. Here the desired measure p, is a Poisson
measure. It is a very attractive idea to obtain
representations of 8 A Diff(R') based on nonpoint-
like configurations. (See also Isham, Ref. 2.)
For example, one can define a st~ing configura-
tion by means of a suitably smooth continuous
path I in'', whose terminal points are x, and
x„and a weight m(x) defined on the path. The
corresponding generalized function E is defined
by

where ds is the path length. One can similarly
define a looP configuration, in which x, =x,. The
space b, of all string configurations (or alterna-
tively all loop configurations) defines a formal
representation of & A Diff(R'). It remains, how-
ever, to specify suitable measures on such spac-
es. Finally, we remark that representations
based on configurations (I",f ) = JF(x)f (x)d'x,
where the E(x) are positive continuous functions,
should be applicable to the quantization of a com-
pressible Quid. The space & is here interpreted
as the space of density functions.

For systems having infinitely many degrees
of freedom, we expect different dynamics to be
described by inequivalent representations of
SA Diff(R'). Thus the dynamical problem of solv-
ing for the grourid state associated with a given
Hamiltonian becomes the problem of finding the
correct representation of & A Diff(R').

The notion of a gauge group has a natural inter-
pretation in the present setting. Given a spatial
configuration I'E&, consider the subgroup X~ of
Diff(R~) which leaves E invariant. Subject again
to measure-theoretical considerations, unitary
representations of X~ now induce representations
of Diff(R') associated with the same set & of spa-
tial configurations. If there is a natural homo-
morphism from X& to a locally compact group 8,
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then unitary representations of 8 can be employed
to induce representations of Diff(R'), with fewer
measure-theoretic problems. The group 8, or
(more generally) g~ itself, serves as a gauge
group for the theory, and its elements play the
role of gauge transformations.

For the configurations describing N identical
particles discussed above, ~ can be chosen to be
the symmetric group S„. Mathematically, this is
the fundamental group of the space of N-particle
configurations. The induced representations of
8& correspond to bosons or fermions. If R' re-
places R' in the above development, 9 becomes
the braid group B„. Its one-dimensional unitary
representations can describe not only bosons or
fermions, but recently discussed particles obey-
ing unusual statistics. ' The case & =&&(3, R) was
discussed above. Similarly, gauge groups can be
specified for string, loop, and fluid configurations.

The above results support the idea that Diff(R')
can function as a kind of universal group for
quantum theory, with its infinitesimal generators
corresponding to noncanonical local quantum
fields describing a wide variety of particles in
inequivalent representations.
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