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Memory Index of First-Passage Time: A Simple Measure of Non-Markovian Character
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The theory is developed for the second moment of the first-passage-time variable of
statistical flows with memory (non-Markovian dynamics) and applied to a model of free
non-Markovian Brownian motion. More importantly, a novel quantity, called memory
index o, is introduced, giving. a quantitative characterization of the influence on non-
Markovian behavior. Thus, a theoretical or experimental evaluation of 0. allows one to
assess the quality of widely used approximative (Markovian) Fokker-Planck-type des-
criptions of the dynamics.

PACS numbers: 05.40.+ j, 05.20.-y, 42.50.+q

The concept of the mean of the first-passage-
time variabl. e"' enjoys great popularity among
many physicists, chemists, and engineers. Its
great practical use for estimating relevant time
scales in nonlinear dynamical problems such as
they occur in chemical kinetics, decay of meta-
stable states, or decay of unstable states in non-
equilibrium systems has been demonstrated many
times. ' "

The main purpose of this paper is the promotion
of yet another quantity: the memory index v [de-
fined below in (20)] of the first-passage-time
random variable. A measurement of 0 does not
prevent major difficulties for experimentalists,
yet provides a novel characterization of the qual-
ity of an a priori Markovian approximation of the
coarse-grained dynamics of nonlinear statistical,
systems. A researcher interested in the theoret-
ical. modeling of the dynamics of statistical sys-
tems will. almost always choose an approximative
Markovian theory such as a nonlinear Fokker-
Planck modeling. ' " lt should be borne in mind,
however, that such an approach has no divine
right. A Markovian modeling merely serves as
an a priori approximation over a more accurate
but generally rather complex non-Markovian
modelj. ng. ' "2 It j.s of course generally under-
stood that "strong" deviations from a Markovian
description can be traced back to the coarse
graining over a slow variable. In complex sys-
tems (e.g. , biological systems) it can become
rather difficult to col.lect the complete set of al/
relevant slow variab1. es forming the approxima-
tive Markovian dynamics. A quantitative criter-
'-.on testing the validity of a chosen Markovian
approximation appears thus very desirable.

Limiting for the sake of simplicity the following
discussion to a one-dimensional stochastic var-
iable x(t), we unavoidably must first develop a
small amount of stochastic calculus. Consider

an interval I = [x„x,] out of the state space of the
dynamical variable x(t). If initial. ly the random
variable x(t) assumes the value x(t, = 0) =x, in I,
the first passage time 7(x,) (a random variable)
is the time which elapses before x(t) leaves the
interval I for the first time. If F,( x) denotes
the probability for a random walker, x(t), which
started our at time t, = 0 at x, to be still in in-
terval. I without ever having left this interval,
one obtains for the probability density p, (x,) that
the first passage time ~(x,) lies in the interval
(t, t+dt)

t, ( .) =- (s/Bt)F, (x.), ~,,=.(x.) =1. (1)

The moments T„(x,) of the first-passage-time
random variable are defined by

T„(x,) = f, t"p, (x,)dt, n =1,2, . . .;
T,(x,) =1.

Now let us first consider a Markovian dynamics;
i.e. , in terms of a master operator I' the time
evolution of the single-event probability density

p, (x) of the stochastic variable x(t) is in opera-
tor notation given by

pg=I" p(

Then, the moments T, in (2) obey a rather simple
equation"2

I'~ T„=-n T„„n= 1,2, . . .; To = 1. (4)

Hereby, I" ~ denotes the adjoint operator with the
kernel I"~(x,y) = I (y, x) and the bar over I'~ de-
notes the properly adjusted operator so as to pre-
vent backflow of probability into the interval I.
In particular, transition rates I'(y -x) =I"(x, y),
with x in I and y not in I, are set equal to zero."
%ith such boundary conditions included in the def-
inition of I', T„ is formal. ly given by iterates of
the Green's function [I'~] ' (inverse of adjusted
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rate matrix'"):

T„=(-I) n![I ']-"1. (5) (14)

g. Introducing the operator n, ~ (first moment)

n, '= f,"s K,'ds,

A non-Markovian dynamics is characterized by
a retarded master operator"'"

pq=f K, ,p, ds, (ea)

where

K -,P. I, = fK -,(x X)p,(3r)dh. (eb)

It has been shown previously, "that the probabil-
ity F, (x,) satisfies the relation

vrith the operator g, ~ being adjusted as above.
It then follows from (1) and (2) that the mean
first passage time T, of a non-Markovian process
obeys

(7)

Clearly this remarkable fact cannot hold true for
al.1. moments T„because processes generated
from a common initial probabil. ity p, (p, not the
stationary probability p ) via (6), or via (3) with
I' given by (9), are markedly different. In par-
ticul. ar, let us focus now on the second moment

T,(x,)= f, t'[-8F, (x,)/8t]dt,

which after a partial integration" equals

T,(x,)=2f, tF, (x,)dt.

Next we use the trivial identity [see (7)]

—f, t(8F, /8t —f, K, ,tF,ds}dt=0,

which readily yields

(12)

T, + SILK,~t s F„' Z = 0}
+$(K t*F t &=0}=0

The notation 2 (f„z= 0} denotes the Laplace
transform of the function f, evaluated at z = 0
and f *g stands for a convolution between f and

(13)

A, t 7, =-1, (ea)

where n, t is given by (zeroth moment)

n, ' = f,"K,&ds. (eb)

Often, the time integral of the kernel. K,(x, y) is
identified with a transition kernel I"(x,y) of a
Markovian process; i.e. , (x~ f,"K, dt)y) =-I'(x, y)
&0, x 4:y.' Hence, the mean first passage time
T, of the non-Markovian dynamics, K„coincides
precisely with T, of the commonly used Markovian
approximation given by'2

((o( =—fo K,ds. (9)

one can recast (13) as

n, t T, =-2 f T, + n, t T,].
This relation is a central result of the paper. It
determines the second moment of the first-pas-
sage-time variable and notably differs from the
corresponding Markovian rel. ation in (4) for n =2
if n, ~ is identified with I" ~ [see (9)].

Before turning to the interpretation of the re-
sult in (15) we apply (15) to the following model
of non-Markovian dynamics:~, '

eT, (T-p) 8 8(,(~)=r' '
—, —, +x)P, (x)dw

Fokker -Planck .u

or for (15), utilizing (ea),

n, 'T, =-2[T, —1],

(17)

(18)

which can easily be integrated. If x = x, is a re-
flecting boundary, 8T2(x)/8x~l„„, =0, and x, &x,
absorbing, T,(x=x,) =0, one obtains in terms of
the stationary probability p ( x) = (2v) '~' exp(- x'/2)

T,(..) = f,."'[dy/P(y)] f„,P(~)«/y', (19a)

T.(x.) = 2f„'[dx/P(y)1 f„;P(~)

x (T,(g ) —1}dz/y', (19b)

(16)

with 7, being a first-order Bessel function. Equa-
tion (16) can be regarded as a model for free
Brownian motion presented here in absence of
any rigorous derivation. Actually, (16) results
as the approximative (Born approximation) gen-
eralized Fokker-Planck equation for Bubin's
model" "of the Brownian motion of a heavy par-
ticle (mass M) in a linear harmonic chain (angu-
lar frequency coupling (d,) of light particles (mass
m) with y' being the mass ratio m/M, x the di-
mensionless velocity, x=(m/kT)'t'u, of the heavy
particle, and T = co,t the dimensionless time vari-
able. " Al.though (16) is not the exact generalized
Fokker-Planck equation for Rubin's model. ," (16)
yields the exact non-Markovian moments, (x(v)
x ~x(0) = x,) and the exact stationary velocity cor-
relation function y(~) = (x(v) x(0)).""Observing
the integrals f,"[J,(T)/v]d~ =1, J,"Z,(~)d~=1,
one obtains

n, t= n, '=y'(x 8/8x+ 8'/8x')
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[T,
' (x,) —T, (x,)]/T, '(x,)= —2/7, (x,). (19c)

(20) approaches zero:

(r(x) = 0(1/T, (x))-0 as D(x)-0. (22)

The superscript NM denotes non-Markovian dy-
namics given by (6) and (16), and M Markovian
dynamics, (9) and (17). Note that (Ts™—T,M)/

T,' is proportional to y'= m/M [compare with
(22) below].

The quantity

)
[(n, ) 'n, 'T]~„, (20a,)

or its average over a probability p, of starting
values xp

o = f, p, (x)o(x) dx/f, p, (x)dx, (20b)

D(x) =-', J (y -x)' rM„„,„(y,x) dy. (21)

In most cases of practical interest, the diffusion
of the intensive macrovariable [i.e. , x(t) =(x(t))
+ O(C ' ')] scales as the inverse of the system
size C,""e.g. , 4 =1/y'= M/m in our Brownian
motion example (16). If we can assume that the
random walker starting at x, on its motion to-
wards the exit point at x, (absorbing boundary)
passes a region in state space where the walker
must eventually overcome a barrier, or at least
passes a region where it moves freely, the first
moment T,(xo) is growing at least inversely to D.
Thus, for vanishing diffusion D(x) (C -~), o in

will be called memory index of the first-passage
time random variable. By use of the Markovian
approximation (9), or equivalently K, = 2 I'5(t),
the operator , ~ vanishes, 0,~=0; i.e. , the
measure o vanishes for all xp Hence, the quan-
tity 0 can be used as a practical quantitative
measure of non-Markovian character and can be
evaluated either theoretically or experimentally'
measuring the moments T, (x,), T,(x,), and cal-
culating T, (x,) from the Markov approximation.
As mentioned earlier, the quantity 0 should be
"small" if there exists a clear-cut separation be-
tween macroscopic and microscopic time scales;
i.e. , if bath correlations are rapidly decaying. "
However, the actual magnitude of such "small. de-
viations from Markovian behavior" not only de-
pends on the relaxation-time scale of bath cor-
relations but is al.so a function of the strength of
the heat-bath noise. This noise strength can be
measured by the value of the macroscopic diffu-
sion coefficient

In conclusion, appreciable deviations from the
approximative Markovian dynamics are expected
to occur predominantly in systems of small size.
Most interesting candidates for observing an ap-
preciable non-Markovian character as charac-
terized by a finite memory index are quantum-
optical systems' ""such as photon statistics in
a single-mode laser at threshold or in absorptive
optical bistability, magnetic hysteresis, noisy
electronic oscil. lators, transport in Sosephson
junctions of small size, or ligand migration in
biomolecules. The theoretical modeling of the
dynamics of those nonlinear systems is usually
based on a heuristic nonlinear Fokker-Planck
equation' ""and most researchers tacitly as-
sume that such an approximative Markovian de-
scription wiQ model. satisfactorily not only the
statics and quantities l.ike T, but also the dynam-
ics as, e.g. , higher-order correl. ation functions
or higher moments T„.

The concept put forward in this paper can also
be utilized to characterize the degree to which a
high-dimensional nonlinear discrete dynamics
exhibiting strange attractors can be approximated
by a one-dimensional. map model.
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