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A new computational approach to time-dependent transition amplitudes in multistate
quantum systems is developed. 'The method, which avoids explicit computation of matrix
eigenvectors, is based upon the recursive generation of residues of Green's functions.
The residues are computed from the eigenvalues of several tridiagonal matrices. Nu-
merical results are presented for multiphoton excitation of overtones in a system with
over 3000 states.
PACS numbers: 03.65.Fd, 32.80.Kf, 33.80.Kn

Over the past few years, remarkable insight
has been gained from the theoretical study of
time-evolving quantal systems. These studies
include the dephasing of initial zero-order states
in conservative systems' and the preparation and
evolution of excited states through coupling of the
system to an external driving field. ' Typically
these studies involve fewer than several hundred
coupled states, although studies involving about
10' states are amenable with a CRA Y-level com-
puter. ' This severe limitation arises from the
necessity of computing and storing all (or many)
of the eigenvectors of the Hamiltonian (or evolu-
tion operator). However, most time-evolving
systems (molecules, surfaces, solids) involve
large numbers of strongly coupled states and are
thus currently inaccessible to "exact" quantum
dynamical studies.

During the past decade, the situation with re-
gard to static- or time-averaged properties has
changed as a result of the development and utiliza-
tion of new theoretical techniques. Among these,
recursion methods are prominent. For example,
the Cambridge solid-state physics group has de-
veloped a recursive approach to the calculation of
local state (electronic or vibrational) densities in
disordered solids. 4 Similar techniques are being
used in other areas. ' ' In some cases, depending
upon the extent of coupling among the states, sys-
tems involving from 10 to 10' states are being
studied.

In this Letter, recursion methods are extended
to the calculation of time-dependent transition
amplitudes, with particular emphasis upon multi-
photon excitation in laser-driven molecules. The
recursion method is particularly adept at handling
problems with very large, but sparse, coupling
matrices. In contrast to matrix diagonalization
methods, this recursion method focuses upon
individual transition amplitudes —those leading
to probabilities probed in an experiment. The
method is based upon the recursive generation

and refinement of. residues of several Green's
functions. A novel feature is that the residues
are computed from sets of eigenvalues —explicit
construction of eigenvectors is not required
Once the residues are known with sufficient ac-
curacy (the calculation can be terminated at var-
ious levels of approximation), time-dependent
transition probabilities are easily computed.

The transition amplitude, for a system de-
scribed by a time-independent Hamiltonian H
(denoted later as M for laser-molecule interac-
tions), between an initial state li) (at t, =0) and
a final state I f) (at time t) is given by'

(f IU(t IO) li ) =(f lexp( —iHt) Ii).
If li ) and I f) belong to the spectrum of a time-
independent Hamiltonian Ho, then transition be-
tween these states is regarded as being induced
by the (time-independent) perturbation V = H- H',
which makes the system "unstable. " Let us write
the eigenvalue equation for H as H la) = e la),
a = 1,2, ... . A discrete nondegenerate spectrum
is assumed, together with the usual completeness
and orthonormality relations: Q I a) (a I

= 1;
(alP) =&„s. From Eq. (1), we obtain

(f I U(t I 0) I t )
'= 2 &f I a & & a I i ) exp( —i& t) . (2)

For a relatively small basis of 1V states (N ~ 10'),
the standard way to compute transition amplitudes
is to diagonalize the matrix II to obtain all eigen-
values and eigenvectors. However, this approach
is intractable for larger bases.

The purpose of this Letter is to show that time-
dependent transition amplitudes can be readily
computed, for large bases (N»10'), without
resorting to explicit knowledge of the eigenstates
I a). This method is based upon recursive gen-
eration of the residues of Green's functions; we
term this the ~ecu~sive-residue-gene~ation meth-
od (RRGM).

The RRGM is based upon the following ideas.
(i) When (f I a) and (i I a) are real valued, 9 it is
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easy to check that the transition amplitude i- a
-f is given by the difference of two positive num-
bers "

&fl &( I &=l[& .I &'-&, I &'l, (3)
where two transition vectors are now associated
with each pair (i,f):

Iu,&=2 "'(Ii&+If&), Ivo&=2 "z(Ii& —If&).
(ii) (u, I a&2 is the residue R„(a) corresponding

to the simple pole & of the Green's function

G„(.) =&, 1(.1-H) 'I .&=K&., l &'/(. —.„),
where z does not belong tg the spectrum of H.
The transition amplitude in Eq. (2) can then be
written

det[zl —H]„
det [zl —H]

a=y
(6)

so that R,f(a) can be computed if we know both
G„(z) and G„(z).

(iv) Focusing upon G„(z), imagine the construe
tion of a new orthonormal basis (from, the origi-
nal Ho basis}, in which luo& is the first member.
In the j lu„&, n =0, 1,.. ., N —1}basis, we need
only the |'l, 1) matrix element of the resolvent
(z1-H) ' in order to construct G„(z). By the
rule to invert matrices,

&f Iij(tIO)Ii&=Q„Rgy( a)e xp(-i e„t),
where R,&(a) = [R„(a)-R„(a)]/2.

(iii) The residue R„(a) is, by its very defini-
tion,"

R„(a) = bm [(z -e.)G„(z)],

(4)

(5)

where:[zl —H]„ is the reduced matrix obtained by
deleting the first row and column from [z1 —H].
The eigenvalues of H and H„are (e„j and(~J"'j,
respectively.

(v} From Eqs. (5) and (6), the residue is then
the product of N —1 factors (each typically the
order of unity):

„' '(u) ~ ~ r„,z&"&(u),

chain link (b,) equal to zero and rediagonalizing
matrix J generates the second set of eigenvalues
je„"j. Since each recursion step generates a
more distant environment of the transition of in-
terest, the method usually converges for N, «N;
most of the physics of the i-f transition is con-
centrated in a relatively small subspace of the
full Hilbert space. '

As recursion proceeds, loss of significant fig-
ures in finite precision arithmetric leads to a
gradual (after 30-50 steps) loss of global orthog-
onality in the (Iu„&j basis. As a result, multi-
ple copies ( ghosts") of some "eigenvalues are
produced, and some "incorrect eigenvalues"
(which settle onto eigenvalues as N, increases)
may also be generated. These "bad" eigenvalues
must be removed before computing residues from
Eq. (7) ~ This is done in a two-step procedure.
First, all multiple copies of the N, eigenvalues

and the N, —1 eigenvalues e " are deleted.
Second, the two lists or eigenvalues are com-
pared to make sure that they form a Sturm se-
quence"; we should have e„« ~" «+,«+,".
However, if a near degeneracy is uncovered,
I e +, —a„"~l«(usually we set 5 =10 '), then
c +, and &

" are both deleted from their respec-
tive lists. This algorithm was always successful
for model problems related to the Hamiltonian in

I n + 1& b„„=HIn& —
I n&a„—I n —1&b„,

where a„= (n IHIn&, b„= (n IHIn —1& =(n —1IHIn&,
and where b„+, is chosen to normalize In + 1&.
The starter is 11&b, = H IO& —10&ao, with IO& = luo&
or IO& = lv, &. Once we have N, chain links, the
eigenvalues (e„j of J are easily (10/0 more cen-
tral processor time and no additional storage)
generated (TQLRAT from the ElSI ACK library is
used). Then setting the coupling term in the first

'
R„(a) =r, ,&"'(u)i', ,t '(u)" I'. .. ,' '(u)1'„.

where I'z & &(u) = (q„—qz'"')/(e —e ). The signifi-
cant result is that residues, and hence transition
amplitudes, can be computed directly from three
sets of eigenvalues [4e„}and (e i"~} from the
(lu„&j basis and (e (v)j from the ( Iv„&j basis],
without explicitly constructing eigenvectors.

In order to generate these sets of eigenvalues,
H is converted to a Jacobi (tridiagonal) matrix
J by the Lanczos recursion method. ""Let a„
and b„+, (n = 0, 1,2, ~, N —1) denote diagonal and
off-diagonal elements in row (n + 1) of 4; this
self-energy and nearest-neighbor coupling energy
define a link in the one-dimensional chain (a 1D
disordered lattice} used to portray J. In the re-
cursion scheme, each additional step "forges a
new link in the chain. " Given the recursion vec-
tors In —1& and In) in fast storage, the next vec-
tor, self-energy, and coupling energy are formed
by the three-term explicit recurrence relation
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Eq. (12). Symptoms of failure to update the eigen-
value lists correctly are (1) a residue greater
than unity is produced, and/or (2) the sum of the
residues deviates from unity (the residues nor-
mally add. to 1.0 to within about 10 "). Although
selective periodic reorthogonalization" mould
eliminate these problems in the eigenvalue lists,
it seems simpler to let the pathology develop and
then apply this remedy. "

Now consider a quantum system driven by a
classical monochromatic field, E'cos(&A). It is
a consequence of Floquet's theorem"" that the
propagator is the product of a periodic unitary
operator times the exponential of a Hermitian

time-independent operator,

V(t I 0) =P(tI 0)exp(-iMt),

where P(t + T'I 0) = P(t IO), in which the optical
period is T = 2m/oI, and P(0IO) = I. For time in-
tervals which are integer multiples of the optical
period, the transition amplitude takes the form
of Eq. (2), in which E is the quasienergy asso-
ciated with Floquet state I a). In addition, M acts
as an effective Hamiltonian in driving the system
to the end of each optical cycle. M may be real-
ized through' the Magnus expansion from the
field-free Hamiltonian H' and the dipole coupling
operator V,& = p,E',

gl

exp(-eST) =exp[- t'f, H(t)at+ ,'f, af' f—, at[H(t), H(t')]+. . .),
where H(t)'=H'+ V& cos(cot). Through third order in V&,

M = H'- ~-'([H', [H', V~]]--,'fv~, [H', V~]]}.

(10)

As a particular model, consider an anharmonic oscillator, dipole coupled to the laser, which is also
linearly coupled to a multimode harmonic bath,

N Sy
H =A(ata)+B(a a) + Id;b; Tb,. + Q V-, ~ (a b&+ab ), (12)

where a,a and b;, b,. are boson raising and lev-
ering operators for the pump mode" and the jth
bath mode, respectively. The last term in Eq.
(12) provides for one-quantum exchange between
the pump mode and each bath mode. In convert-
ing II and V~ intoM, we retained only the lowest
order in V,~. If there are P states available in
each of the N, + 1 modes, then the total basis size
is N = P""'. For the results reported here, N, =4
and P =5, so that N =3125. However, because of

the simple form of the coupling terms in Eq. (12),
only about 24000 of the nearly 10' matrix ele-
ments in M are nonzero.

In Fig. 1, probabilities. are shawn for multi-
photon excitation from the ground state to all
pump-mode overtone states, IO, 0, 0, 0, 0)—

I f, 0,
0, 0,0) (the quantum numbers are for the pump

mode, first bath mode, etc.), where f =1,. .., 4.
In addition, the probability of surviving in the
ground state is shown. These converged results
mere obtained by truncating the recursion at far
fewer chain links than the full basis size (for
f=0, 1, 2, 3, and 4, the number of links used
was N, =100, 150, 150, 250, and 1000). Total
central processor time on a CYBEH 170/750 was
about 6 min. Similar results have been obtained
for much larger bases involving nearly 15000
states (of which there are about 1.4&10' nonzero
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H:G. 1. Time-dependent transition probabilities
P;~ {t),where Ii) =I 0, 0, 0, 0, 0) is the ground state snd

If)=If, O, O, O, O) is a pump-mode overtone state There.
are 5 states per mode and 3125 states in the basis. The
laser frequency is 1000 cm . Parameters in inverse
centimeters in the Hamiltonian in Eq. (12) are A=1000,
B=-20& ct) ) =970& ct) 2=990& u3 1010& ~4 1030& Vint
=30 |independent of j), and t/'„d =40. States of the
field-free Hamiltonian fall into bands separated by
about 1000 cm '. The lowest band (1 state) lies near
F=0 cm ', the first excited band (5 states) near 1000
cm ', etc.
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matrix elements, out of a total of nearly 0.3 &&10').

Further details are presented elsewhere. Appli-
cations are neer possible to systems involving
many more states than considered previously, "
including the study of quantum chaos~ and multi-
photon excitation" in small polyatomic molecules.
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