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Dynamic Correlation Functions for Quantum Spin Chains
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New exact results are presented on the long-time asymptotic expansions of the T = 0
autocorrelation functions, and on the leading singularities of their frequency-dependent
Fourier transforms, for the one-dimensional S = 2 isotropic XY model and the S= y tr~~~-
verse Ising model at the critical field. High-precision numerical calculations of the
latter functions are also given, and experiments are proposed to observe the functional
behaviors that are found.
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in the limit N-~, with periodic boundary condi-
tions imposed. We report here the first calcula-
tion of the Fourier-transformed spin autocorre-
lation functions (ACF 's)

4 vu(~)- f „dte' '(S,v(t)Sou)

for p= x,y, in these models, based on an exact
approach. Our results are of direct experimen-
tal interest, since there are several compounds
which exhibit quasi-1D interactions described by
(1) or (2). C, ~gru) is important since it is the in-
tegral over q of the dynamic structure factor
S»(q, ~) measured by inelastic neutron scatter-
ing, and, for small. ~, is related to the spin-
lattice relaxation rate measured by nucl. ear mag-
netic resonance experiments.

We have analytically determined the singulari-
ties in 40»(&u) by means of a newly extended long-
time asymptotic expansion (LTAE) at T = 0 of
the ACF's X,(t) and Yo(t) [we use the notation

PACS numbers: 75.10.Jm, 75.40.Fa

Exactly solvable models of one-dimensional.
(1D) spin systems have contributed greatly to
our present understanding of statistical. mechan-
ics and condensed-matter physics. Although the
thermodynamic properties of those models have
been calculated, very l.ittl. e is known about the
dynamic correlation functions. However, the
knowledge of these dynamic correlation functions
is crucial for understanding the excitation spec-
trum of the underl. ying model. and its observabil. —

ity in dynamical. experiments.
In this Letter we study the dynamics at tem-

perature T = 0 of the 1D, S = 2 transverse Ising
(TI) model at the critical. external magnetic field
and the 1D, S = 2 isotropic XY model. in zero
fiel.d, defined by the respective Hamil. tonians

N

H» = —Q (2S,"S,+~" + h, S,'), h, = 1,

-„(t)=—4(S,~(t)S„~), $ =x,y, z for the two-spin
correlation functions]. Z„(t) has been known an-
al.ytical, l.y for many years for both models at ar-
bitrary T.' In contrast, there has never been
any complete calculation of X„(t) or Y„(t) for gen-
eral T and, in particular, for the case T = 0 of
interest here. ' This can be understood as a re-
sult of the fact that, after the Jordan-Wigner
transformation from spin operators to fermion
operators, Z„(t) involves only a product of four
fermion operators, whereas X„(t) and Y„(t) in-
volve an infinite number of these operators. The
latter ACF's are thus much more compl. icated
objects and represent (in the fermion language)
not just the excitation of particle-hole pairs, but
rather the excitation of arbitrarily many such
palrse

Recently, progress has been made in deter-
mining X„(t) and Y„(t) at T =0 for both models.
ft has been shown that [X„(t)]» can be expressed
in terms of a function o„(z) as

[X„(t)»
= [X„(0)]T1exp[- t /2+ f dt' t' o„(it')], (4a)

where [X,(0)]»=1 and, for In I ~ 1,
l~l

[X (0)],=(2/ ) I

ZZ [1 1/(2t) ]~-l. l (4b)

and o„(z) satisfies

(zo„")2+4(zo„' —o„-n2)[zo„'—o„+(o„')']= 0 (5)

with the initial. condition that for ~ - 0

o (z) —Q + z2k+z2n+1 Q l z2k
0 =0

where all a„„and b, „can be calculated recursive-
ly in terms of b, „, and for the ACF (n =0), b, ,
=1/71. Given [X,(t)]T„ the other ACF's of inter-
est can be calculated from it by means of the re-
lations' [Y (t)], = —[X,(t)], and' [X,(t)] „
= [Y.(t)] = ([&.(t/»]
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For Ref. 4, Eq. (5) was solved numerically for
n =0, and from this numerical solution an analytic
unsafe for the LTAE of o,(it) was inferred, and
then verified analytically. This LTAE was cal-
culated for general b, , to 0(t ') and, with some
further terms for the physical value b»= 1/I1,
was used to construct the resultant LTAE of

[X,(f)]T, to 0(t " '). For our present purposes
we have extended the LTAE of o,(it) completely
to 0(t ') and have calculated the terms of 0 (t '/')

that are necessary to obtain the leading e '"
term in [X,(t)] T„which enters first at Q(t "').
We find that the LTAE of [2',(f)]» has the follow-
ing structure, as far as we have determined it:

[X.(f))T1-&(if) '' Z T..' ", T '"'=(2~)- 'e '*"(-2if)-"-2-'- Q c„'"'(-2ii)-".
tm=O @=0

(7)

TABLE I. Coefficients c„( 1, o. , and p„of the LTAE
of [Xp(t) ]y~, coefficents d „( ), y ~ and 6 of the LTAE
of t Xp(t)]gg.

(P)- 2-3
C2

c,«&= (Si/2) 7

c,('1=(9/2)'
c&('1 = (297/2) '
c ( = (7587/2)

d(')=2 '
2

d4( = (41/2)5
d (0= (9/2)3
d ('& = (313/2) '
d (1= (7731/2)
d (1= (ll/2)

C (2)c(
c (2)-

Ap=
Q(=

d{
2

G7 (2)=

d (3)=

d (3)-

Vp

+i

(15/2)'
(489/2)'
0
1/2
2

(249/2)'
(3551/2) '
(39/2) 3

(2809/2) '
0
1/2

n~= 9/2
Pp=0
P(=0
P 2= 2
P3=5

72=1
~, = 5/2
6p= 0
6(= -1
62= 0
63= 1

Here A. = 2' "exp[30'(- I)], the coefficients c„'
are positive rational numbers with cp 1 for
al.l m and c,„+,"'=0 for all. n, and the exponents

are positive integers or half-integers. The
values of c„' ', a, and P„which have so far
been calcul. ated are l.isted in Tabl. e I. We have
written the LTAE of [X,(f)]T, in a form which
renders its wel. l.-known symmetry property
X,*(-f) =X,(t) manifest.

Further general. features of this LTAE are the
fo1,l.owing:

(i) The dominant term at large f is A(it) 'i~.
This ref l.ects the Lorentz invariance in a seal. ing
limit, given the result that' [X„(0)]T,-An '/, for
l.arge n.

(ii) [X,(t)]» consists of an infinite sum of terms
T„' ", m=0, 1.. ., each with a specific oscil.la-
tory t dependence givenby the phase factor e " '.
The fact that all the terms in (7) have frequencies
of only one sign is a consequence of the detail. ed
bal, ance condition, which implies that at T= 0,
C,""((u)=0 for (d& 0.

(iii) Each term T„' " itself is an infinite ser-
ies of terms with descending powers of t and wil. l
thus be denoted as a "tower. " Each successive
tower enters first at a progressively higher level
in the expansion; i.e. , the higher the oscillation
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FIG. 1. The frequency-dependent autocor relation
functions [Cp" (~)]T& and [ Cp~~(cu)]&&. The dominant
singularities at ~ = 0, 2, 4 are given in Eq. (8).

! frequency, the more highl. y suppressed the tower
isin t

The LTAE of [Y,(t)]» as calculated from (7) is
again an infinite sum of towers, but differs from
[X,(t)]» in that, for example, the leading term
comes not from T, ,' "but from T»' "and is
A 2' 'e "'(it) ' (-it) ' '. Hence a continuum
approximation woul, d fail completel, y for [Y,(t)]»,
since it would predict that the l.eading term at
l.arge t is t ', corresponding to then ' be-
havior' of [Y„(0)]T1for large n; the latter is cor-
rect only for the discrete system. The fact that
[Y,(t)]T, fall. s off more rapidly at large t than
[X,(t)]» reflects the fact that the x and y axes
are the "easy" and the "hard" spin-fluctuation
directions, respectivel. y.

In order to determine [4,""(~)]T„wehave used
the numerical cal.culation of [X,(t)]T1 which was
carried out for Ref. 4. At t = 40, this solution
matches the known LTAE to within a relative er-
ror of 10 '. We generate [4,""(co)]T,by a, fast-
Fourier-transform program using the precise
numerical results for [X,(t)]» for f & 40 and the
LTAE for t) 40. The resulting [4,""(~)]T, is
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plotted in Fig. 1. The accuracy of the curve is better than 1 part in 10' over the range of co shown. We
also give [4,"(~)]«=~'[4,"*(~)]T] in Fig. 1.

These frequency-dependent ACF's evidently have quite striking behavior including "visible" singu-
larities at (I) =0, 2, 4. From the LTAE of [X,(t) JT1 we find that the dominant singularities of [4,"*(~)JT,
at ~=0, 2, 4 are given, respectively, by

3/2 A P ( 3
)~

- 3/4 g (~)

[43""(cu)]« - 2 7(
' X r(') I(u —2! ' (8(2 —(d)+ 2 ' e((I) —2)].I

2 "'~ '&l'(- ')(~-4)3"g(~-4)!

The leading singularities of [4,"(~)]«are of the same form as those of [4,""(co)]T, except the one at
&v=0, which is -(I)' &(~). The difference in the singularity at (d=0 can be attributed to the fact that x
is the "easy" and y the "hard" spin-fluctuation direction. The LTAE's indicate that [4,*"(~)]»and

[4,"(v)]» should have finite points of nonanalyticity at &u=2tn, tn ~ 2 whose dominant terms are of the
form ((I) —2tn) "~8((I)—2m) or !~ —2tn! "~f&(2tn —&I)) +2 '/26(&t) —2m)], where v is a monotonically in-
creasing function of m. We find that both [4,""(ru)]«and [4,"((t))]T, decrease quite rapidly to zero at
~& 2. In fact, sum rules require that as ~- ~, these functions tend to zero faster than any power. '

From (7) we calculate the LTAE of [X,(t)]».

[X (t)] (X) 2 2(ft) / p T (x+) T (Xrt = (2)1) I/2e -q™t( jf) Xn) 2 3~ g d (m)( jf)-n
m=O n=0

(9)

The coefficients d„™are again positive rational
numbers with do™= 1 for all m and d,„+, '" =0 for
all n. The values of d„~ ~, y, and 5 which have
been calculated are listed in Table I. The lead-
ing term in (9), which is ~t '/', can again be un-
derstood as reflecting Lorentz invariance in a
scaling limit, given the result' that [X„(0)]»
-pg '' for large n. In contrast to the Tl case,
all nonnegative integral frequencies, not only the
even ones, occur. As with [X,(t)]», the higher-
frequency towers enter at more highly suppressed
levels in t.

By the same method as for the TI model, and
with equally high precision, we have numerically
calculated [4,""((t))]z„. Our result is plotted in
Fig. 2. From the LTAE (9) we find that the dom-
inant singularities in [4o""((d) ]~r = [4o'2((t))]~„at
~=0, 1, 2 are, respectively,

(~)22 1/2g/2~ -1/2g(~)

j. +v '
[4 **(w)] —- (A)'2 ~w '~ 1n ( (10)

! —(&)'2 ' ')1 ' '((d —2)' '6((I) —2).

These singularities are clearly visible in Fig. 2.
The LTAE indicates that [4,""((d)]»has further
finite points of nonanalyticity at all integral fre-
quencies cu & 2, with monotonically increasing
positive rational powers, similar to the TI case.

Since the x-y plane is the "easy" plane in the
XYmodel and the x axis is the "easy" axis of the
TI model for spin fluctuations, it is appropriate
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FIG. 2. The frequency-dependent autocor relation
function [Co (~)]x~ = [Co (cu) )x~. The dominant singu-
larities at cu = 0, 1,2 are given in Eq. (10).

to compare [4,""(~)]~„and [4,"*(~)]T(. We inter-
pret the greater severity of the ~=0 singularity
in [4,""((())]T, relative to that in [4,""(~))»as
reflecting the greater extent of spin fluctuations
in the XF model. This is an accord with the well-
known fact that the static correlations at large
distances are stronger in the TI model (-n '/')
relative to the XF model (-n '/'). '

A further noteworthy finding is that [43]'I'((I))]T,
and [4,»(&u)]», p=x, y, are convex functions of
~ on the intervals between each of their respec-
tive singularities.

Finally, we emphasize that the divergences and
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finite nonanalyticities in the ACF's at nonzero
frequencies are intrinsic features of the discrete
quantum chain and therefore would not be found

by any continuum analysis. "
In summary, we have extended the long-time

asymptotic expansions of the zero-temperature
autocorrelation functions for the 1D, S =~ trans-
verse Ising model at the critical field and the 1D,
S =& isotropic XK model at zero field. We have
combined these new analytic results with the nu-
merical solution to the ordinary differential equa-
tion governing the time dependence of the ACF's
to calculate by Fourier transform the frequency-
dependent ACF's. Finally, we have determined
the exact form of the singularities in the latter
functions.

Our new results provide strong motivation for
experimentalists to measure the low-temperature
dynamical properties of quasi-1D compounds to
observe the frequency behaviors shown in Figs.
1 and 2 (realistically smeared). Such compounds
include, for example, the S=& XF-like sub-
stances Cs,CoCl4 and PrCl, and the S =-', Ising-
like substance CsCoCl, 2H,O.
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