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Nuclear Level Densities and Partition Functions with Interactions

J. B. French and V. K. B. Kota, '
DePartment of I'hysics and Astronomy, University of Rochester, Rochester, 1Veso York 14627

(Received 29 August 1983)

A general theory, .based on central limit theorems and unitary-group decompositions
of the microscopic II, is given for the nuclear 1.evel density. The density appears in terms
of convolutions of noninteracting-particle densities with easily calculable interaction
functions given explicitly in terms of the Hamiltonian matrix elements.
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The nuclear level density, and its decomposi-
tion by conserved symmetries and by configura-
tions (partitionings of the active particles among
orbits), are important on practical grounds .hey
are sometimes measurable, and they enter into
the calculation of reaction cross sections —and,
formally, because, when given as functions of
the Hamiltonian parameters, they determine the
smoothed partition function and hence much of
the statistical behavior of the nucleus. The pur-
pose of this paper is to outline a general theory
for interacting nucleons which derives, directly
and without free parameters, from the microscop-
ic Hamiltonian. Among other things it will ex-
plain why the conventional noninteracting-particle
(NIP) level-density theories" are often success-
ful, and will give forms and measures for the
various kinds of orbital admixings generated by
the interaction which the NIP theories do not deal
with. From the formal standpoint it should lead
to a more fundamental statistical theory of nu-
clear reactions and should make contributions
also to the theory of the effective interaction.

The basis of the theory is an elementary unitary-
group decomposition of the interaction Hamilton-
ian, coupled with the use of spectral- and ensem-
ble-averaging methods. It has been argued be-
fore, ' and to a considerable extent demonstrated, "
that spectral averaging should lead to a proper
level-density theory. A problem of form, how-

ever, arises, with spectral averaging, fxom the
initial restriction of the single-particle (sp) spec-
trum to a finite set of sp states. This leads to
the level density as a superposition of configura-
tion densities valid only for a restricted part of
the spectrum. The consequence is that one loses
contact with the essentially combinatorial NIP
form. Moreover, as we extend the sp spectrum
in order to proceed to higher energies we encount-
er a problem of substance, namely that the var-
iances of all the configuration distributions in-

crease indefinitely; this, on the face of it, gen-
erates ever larger orbital admixings and spread-
ings, destroying the shell-model stability. We
shall dispose of both of these problems.

Let the single-particle model space be parti-
tioned as usual according to major shells, and
further via spherical (j) orbits. Then the m-par-
ticle states are described via configurations
which we may catalog by s, the major-shell exci-
tation; for example, if the 1s and 1P shells are
regarded as filled, (1d, 2s) with 0&m ~24 has
8=0 while (1d, 2s)™2(lf)' has s=2. Writing G(4)
for a 0-body operator we have H =A(0) +h(1) + V(2)
where h =Pe, (1)n; is determined by the single-
particle energies (spe), and the interaction V by
the matrix elements V;,». V also has a ma, jor-
shell decomposition, V=+V, with t =0, 2, . .. ,
where V, generates +th~ excitations. When V=0
we have the NIP density, &,(E) say, which con-
sists of a number of degenerate sets ("spikes" )

labeled by configurations (c) with energies S,
and degeneracies d, . The smoothed form of I,(E),
which is essentially exp(bE) ', can be calculated
by either conventional or spectral methods. For
brevity, we do not deal with that here, nor with
the (J, T) decomposition which, even with inter-
actions, can be carried out spectrally; the parity
decomposition comes automatically with the con-

figurationss,

Unitary transformations come into play because
of the antisymmetry of the fermion states, With
that in mind we first extract from V that part
( V~ ~ with [ 0]= [0, 0, . . . ]) which is invariant with

respect to the group of simultaneous unitary
transformations in every orbit n. Thus V= V~'j

+ V ~ ~ where [ A] then stands for all the nons'calar
irreps. Since it is necessarily a quadratic poly-
nomial in the orbital number operators n

a; ta;, V"~ preserves the configuration de-
generaeies, has no matrix elements connecting
configurations, and receives contributions only
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from V,. It does, however, shift the centroids, $,
—8, + Ah, . Moreover, because of its J-scalartwo-
body nature, V j cannot transform as a nontrivial
(gi) scalar in any orbit since any n„operator ap-
pearing in V must be multiplied by some n &

—6

and must therefore belong to V 'j. Thus all the
centroids are fixed by V ' . Our first problem
now is to investigate the centroid shifts AS„
asking in particular whether they are compatible
with a renormalization of the spe.

Anticipating that the abnormally large orbital
admixings will be eliminated, we see that at en-
ergy E there will be some finite subset of active
orbits, containing, say, N=N(E) sp states. We

can now decompose that part of V 'j which in-
volves the active orbits into U(N) tensors, Ul'j
=Pv'l'j where V', with "unitary rank" v =0, 1, 2,
belongs to the Young columnar shape [N —v, vj
and contains (,":;)as a factor", here n=Qn~,
summed over the active orbits. For fixed par-
ticle number m, V behaves as a constant, V' as
a one-body operator, and V' as a, "true'* two-
body operator.

Now we "turn on" V as follows:
(1) V'l'j which locally shifts the NIP spectrum.

This adds to H(0) and may for present purposes
be ignored.

(2) V'~oj which contains (n —1) as a factor and
therefore gives only a number-dependent renor-
malization of the spe. Thus I,(E) -I,(E) where
f,(E) is locally of NIP form.

(3) V'~'l which preserves the NIP degeneracies
but moves the 8, in a way not given by changes in
the spe. We shall see that V' '~ is negligible.

(4) V, ~ l, the part of the residual H which gen-
erates excitations only within a major shell, pre-
serving the oscillator symmetry. This term
produces the 08~ admixings and spreadings (var-
iances o, ) of the configurations. In conjunction
with f,(E) it gives rise to the level density I,(E)
which is valid for E~h&.

(5) V„,~ j= V„,. If treated like V, l j this term
would generate the anomalously large orbital ad-
mixings. But by connecting configurations which
are too far apart to be strongly interacting, it
generates multimodal distributions which require
a special treatment.

V' is obviously defined by the quantities V &,
the average interaction between two particles,
one in orbit n and one in P (which may coincide).
With N the orbital degeneracy, the dimensional-
ity of the corresponding two-particle space is

g =N (NB —&„g)(1——,'5„g). Recognizing that n~,
defined similarly, is the projection operator for

these states, we have, with i (j when n = P,

Vl'l= Q V Bn„g,n(6
V„B=N„g ' p Q V;, ;, .

zion

jE8

To carry out the local decomposition referred to
above we restrict the orbits to those active in
the region of interest; then N =gN„. By simple
intuitive arguments, or more formally, ' we find

v'l'j= v(."); v=(,")-' p N„,v„, ,

V' 'j = (n —l)gf „(2)n„

~„(2)=(N -2)-'Q(N, —O„,)(V„,—V) .

V't-'j is of no interest to us. The form of V' '
displays explicitly the renormalization of the sp
Hamiltonian, h -h =h + V' 'j, while

e (1) —e„=c„(1)+(m —1)e„(2).
The unitary decomposition of h is

+h'= en++(e„—pen

with e =N '~„e„; similarly for h with e„(1) in-
stead of e~. The results that (,")=Q zn„s and

(n -l)n„=g„a(1+5„8)n„~, while V 't'j= V~'j

—V'~'l —V'i'~, enables us to write "two-body"
forms PV„q'n 8 for each V".

To understand the action of V ' in the m-par-
ticle space of the active orbits we need, for the
traceless operators O', V' ', and V'~'j, their
relative magnitudes and their correlation coeffi-
cients. These are defined (for traceless opera. -
tors F) in terms of the unitary norm i Fi whose
square is (FtF) =-( ) 'Tr(FtF), the average
eigenvalue of the Hermitian square, which is
easily evaluated. ' Three general results are that
operators of different unitary rank are uncorre-
lated, that the correlation coefficient for opera-
tors of the same v are independent of m, and
that the norm of F'(k) grows asymptotically with

~&-&/2 so that i/zi
i

m ~l/2
i

V i'~» i~ -m"
and i

V'l'ji"-m. With typical interactions' we
find that, in the two-particle space, V' ' and
V' 'j are of comparable magnitude, but very
much smaller than h'; moreover h' and V'~'~

have a strong positive correlation i)0.9 in (ds),
0.99 in the space generated by the first fifteen
orbits, the primary one-body H in the latter case
being taken a,s that of a harmonic oscillator].
Then, because the primary and induced one-body
Hamiltonians add coherently, and because the
latter grows more rapidly than V' 'j, the V' '
effects are negligible, giving a norm correction
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-2/z in (ds) and -0.2o%%d in the larger case. Taking
for granted that this result extends to larger nu-
clei, and leaving for the future on explanation of
its origin in terms of the spatial and spin proper-
ties of V, we conclude that the entire centroid-
generating Hamiltonian V 'j is well represented
by an effective one-body operator so that, under
its inclusion, the NIP level-density form is still
maintained.

As we have said, the t =0 part of the remaining
interaction Vi l= V" 3 generates the 05&v ad-
mixings and configuration spreadings. Though
there will be fluctuations in the shapes of individ-
ual configuration distributions it is adequate for
us to take them as Gaussian, ' defined therefore
by (d„b„5,') with d, the dimensionality, and

o, '=o, '(t =0). It has been observed in many
numerical calculations that m-particle configura-
tion variances, calculated for realistic interac-
tions, fluctuate very little about the average
which, properly weighted, is

o '=d-'Pd o '=((V'")')
where ( ~ ~ )", essentially a trace, is defined
above. To calculate the variance of the &,'
(similarly for o', ') we first construct a variance-
generating operator E (analogous to the centroid
generator above, and also expressed in terms of
the n operators) and then evaluate its variance
in the m-particle space. We find, as a compact
operator version of an earlier result, ' that

Here N 8K~8&q is the sum of squares of the ma-
trix elements of V j connecting the two-particle
configurations (1, ls) and (I&, lz), so that E„sz&
is a partial (1„,ls) variance, while E" is the
hole-particle adjoint of I, n~ then being N~ -n~,
and of course (K) = o„'. The fractional rms
deviation of the o, is then 6(m) =(~E~ ")'/2o„'(m);
schematically o, (m) = o„(m)[1a 6(m) j. The evalua-
tion of the quadratic and quartic traces, in terms
of the V, ,», follows easily' from their values for
two, three, and four particles.

For ds-shell interactions (X=24) we find o, (m)
-8(1+0.03) MeV. Spaces whose sp spectra span
several major shells are immense, and then
simple averaging may be misleading. The ap-
propriate averages, also easily calculable, are
over the subspaces with fixed sA~ excitation,
which so far are noninteracting since t =0. For
example, a ten-orbit interaction (R = 80) with m

=24 has s „=44 and gives 0, =30+1.5 MeV on
the gross average. But for s=0, 2, and 4 we
find o', =7.5(1a0.03), 11.9(1+0.11), and 15.2(1
+0.10) MeV. We note incidentally a secular in-
crease of the spreading widths with energy,
o„'(m) —o„'(m, s),

Ignoring the small variance fluctuations we see
now that for E & S~, for which only s = 0 is rele-
vant, the t =0 level density is a simple convolu-
tion' of the renormalized NIP density I,(E) with
an "interaction Gaussian" of unit integral and
variance o„'(s=0), t,(E) =I, @p ~o' '~[Ej. For the
general case we have a sum of convolutions,

(5)

which displays the simple connection between the
interacting- and noninteracting-particle densities.
The s decomposition of the NIP level density fol-
lows directly from the configuration decomposi-
tion' and is very simply done by spectral meth-
ods. It is noteworthy that, in their phenomeno-
logical introduction of interactions into an NIP
theory, Haq and Wong' have assn~ed a some-
what similar convolution form, as well as an in-
crease of the effective configuration variances
with energy.

The I, » 2 excitations make such large contribu-
tions to all the configuration variances that the
corresponding Gaussian distributions could not
be reconciled with the low-energy shell structure;
with (ds)' configurations in our ten-orbit case
o, '(t) =P~, o„'(t) =64, 280, and 550 MeV' for t
=0, 2, and 4, giving widths -8, 19, and 30 MeV.
But these variances are still small compared
with (t&~)' where tRcu is the separation of spher-
ical configurations connected by V,. Hence V,
generates admixings too weak to produce a. uni-
modal (Gaussian) distribution. Formally the ad-
mixing parameter, which must be ~1 for Gauss-
ian, is T(t) = &'(t)/(thu)'=0. 18, 0.09, and 0.03
for t = 2, 4, and 6 excitations of s = 0 configura-
tions in our example. When 7(t) «1 the configura-
tion distributions become multimodal, "each of
the well separated modes having a dominant s
value. The t & 2 variances then mainly describe
not configuration spreading but rather the trans-
port of small configuration intensities over a
wide energy range. This effect, of no present
interest, is measured by the anomalous vari-
ances. But the interesting quantities are the
modal variances.

For small 7 we can ignore the t admixings or
treat them perturbatively. A procedure valid for
arbitrary v represents the intershell interactions
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by a random matrix. We illustrate this for t = 2

excitations of an s =0 configuration (adequate for
E(30 MeV), ignoring the internal variance moo'

to begin with, as well as the fine structure as-
sociated with the t =2 excitations, both being
much smaller than 4'. We thus have two spikes
separated by 4 =2hcu with a two-body interaction
whose elements we draw from an off-diagonal
Gaussian orthogonal ensemble defined in the two-
particle space but acting in the (m» 2)-particle
space. Solving this we find that the s =0 distribu-
tion, po in (5), is replaced by a bimodal form
which vanishes in 0&W(6, where W=E —S„
and otherwise is

p(R', s =0) = ~0, 'i W- b, iexp{-W(W- b,)i~0,').

In the weak-interaction limit (7 « I) (6) gives
the perturbation result, a Gaussian modal dis-
tribution with variance aoo'+To»'. At the other
limit (r» 1) we get (1 —v/4) v»' for the modal
variance; the model in this limit is artificial be-
cause of the t -2 restriction, without which the
configuration distributions would of course be
Gaussian with anomalous variances. For the
physically relevant intermediate strengths we
have a true bimodal distribution, the "lost" s =0
intensity being replaced by s = 2 and the modal
variance taking on part of the intershell variance.
For w =0.18, found for (ds)' in the ten-orbit case,
the modal variance is 0.080»' - 20 MeV' which
will increase the effective s = 0 configuration
widths from 8 to 9 MeV rather than to 19 MeV

as in the naive treatment. We thus have disposed
of the problem of the anomalous variances. It is
the procedures used here which should have spe-
cial relevance to effective-interaction theory.

A more complete account, with an extended
treatment of the multi-S~ excitations, and appli-
cations to level densities and other statistical
quantities, will be given later. We acknowledge
useful conversations with J. P. Draayer and
C. Jacquemin. This work has been supported in
part by the U. S. Department of Energy.
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