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Pattern Selection and Spatiotemporal Transition to Chaos in the Ginzburg-Landau Equation

K. Nozaki and N. Bekki
DePartment of Physics, Nagoya University, Nagoya 464, JaPan

(H,eceived 5 August 1983)

It is shown that a modulationally unstable pattern is selected and propagates into an ini-
tially unstable motionless state in the one-dimensional generalized Ginzburg-Landau equa-
tion. A further spatiotemporal transition occurs with a sharp interface from the selected
unstable pattern to a stabilized pattern or a chaotic state. The distinct transition makes a
coherent structure coexist with a chaotic state.

PACS numbers: 03.40.Kf, 05.70.Ln

A coherent structure and a chaotic state are
two distinct states of nonlinear dissipative wave
systems. In this Letter, we investigate spatio-
temporal transitions from an unstable motionless
state to a coherently oscillating state and a chao-
tic state. As a model equation describing such
phenomena as generally as possible, we take the
generalized time-dependent Ginzbur g-Landau
equation:

t4, + p4..+ql pl'4 =ty 0,
where p ~p„+ip; and q =q„+ iq, and we assume
that I p, l

= I q, l =1, p, & 0, q~& 0, and y & 0. This
equation has a quite wide range of applications
such as a phase transition in nonequilibrium sys-
tems, ' Benard convection, Taylor-Couette flow,
plane Poiseuille flow in fluid systems, drift dis-
sipative waves in plasma physics, ' chemical tur-
bulence, ' and ionization waves in the glow dis-
charge. ' The following three different states are
well-known solutions of Eq. (1): a motionless
state (P =0), periodic patterns described by fi-
nite-amplitude plane-wave solutions, and chaotic
states."The crucial question is how and under
what condition a localized initial disturbance
grows up into a periodic pattern and a chaotic
state. A striking result of our investigation is
the occurrence of a sharp selection of a modula-
tionally unstable pattern although many other
stable patterns are possible when p„q„+p& q, & 0.
Even in the case p„q„+p, q, & 0 where any equilib-
rium patterns (finite-amplitude plane-wave solu-
tions) become unstable for long-wavelength per-
turbations, a selected periodic pattern can propa-
gate in the motionless state, accompanying a
chaotic region. As a result of this, the coexis-
tence of a coherent state and a chaotic state oc-
curs with a sharp interface.

(1) The transition from a quiescent state to a
periodic pattern can be described by a shock so-

rc {x - ut)}-{y+ &n)

P +(2 + P2}1/2

:(p,q, + p; q~)/-(p, q; -p~q, ),

(4)

K )0
q;+(&/p )( p - .p,)'-

& = (p, q) -p) q, )/3~ l pl',

ac=( -{z,'p„/p, )-Kq v =-3lpl'){/p&,

where A ean be always taken negative so that
K'. & 0 by the choice of an appropriate branch of m.
Another interesting but implicit solution is ob-
tained by the marginal-stability condition intro-
duced by Dee and Langer for a different problem.
This condition says that small disturbances near
the shock front neither grow nor decay in the
frame moving with the shock and gives the shock
speed v* and the wave number of the pattern be-
hind the shock K* as

v*=2l pisa„, If.=(-y/p p»

~*=t,(q, l pl. p, l ql)/(p, q, -p, q, ))~.,
(8)

(9)

where a branch of K* should be chosen so that
l
E*l ~K . A qualitative form of ( can be ob-

tained by the explicit solution (4) since, as we
see later, values of v* and K* are close to those
of the explicit solution for most values of pa-
rameters. (The precise form of f is numeri-

lution:

y= y, e'{'" ""y(x-vt), (2)

~= p, ~'-q, l c,l', Iv, l'=(y+ p, If')/q„
where IC and v are chosen so that I Pl vanishes at
one infinity and approaches 1 at the other infinity.
It may be instructive to show the following expli-
cit solution which assures the existence of such
K and v:
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cally obtained and will be publ' h d lis e e sewhere. )
Numerical integrations of E '1'N

' ' ' o q. i g under localized
initial conditions are perfor d brme y means of the
Adams-Bashforth explicit scheme' with mesh
sizes &t=0.055 and 4m=0.3. As l
itial

s localized in-
cr o ic secant typei ia conditions, we take a hyp b l'

o is urbancep with various amplitudes and
widths and it is confirmed th te a our results are
in ' ' ' ' i con i ions except ini-insensitive to such initial d't'
tial transitional phases. The accuracy of num-
erical experiments is checked by chan n m

' i e in Fig. 1, results of our nu-
merical simulations show th t d fa e inite values of
speed and wave number (v * d K*'an ~ are selected
according to the marginal stabilit
'w en zqz+p»q»( 0 or
not close to 1. A t i
w en» q» or p„q„+p» q» is positive but

ypical propagation pattern is
shown in Fig. 2(a), where P

x, =sech(0.05x). It should be noted that the
marginal-stability condition depends onl

p perties of the motionless stat d
n so yonlin-

sssaean allse-

tom
patterns in Fig. 1 are found t bn o e unstable

Dip
odulatxonal disturbances ( St

rima for
see uart and

or the modulational instabilit '.
Therefore f

a iiy,'.

lected atte
urther transitions occur ' thin e se-

pattern. Since there exist stabl
wavelen~~h states than the selected one in the

is s a e longer-

case P +„q„P,q, (0, a stabilized longe-
len hre '

nger-wave-

How
region follows after the s l t dse ec e pattern.

owever, the width of the stabilized re 'on i-
creases ver sl
wavelen h

ry s owly so that the selected h t
gt pattern develops well and t d'

s or er-

coherent patterns emer e w'
n wo distinct

xn 's case I ig. 2(b)].thi
erge with a sharp boundary

(2) The spatiotemporal transition to a chaotic
state occurs in the case p„q„+ &0

p i u e plane waves become unstable.
When the modulational instabilit

a „q„+p» q» is positive but not close to I, a
periodic pattern still emerges behind

on . s soon as the pattern sel t
curs a ch

e ec ion oc-
chaotic region develops ' th

pattern with a formation of th
in e selected

e second front of a
s ower propagation speed as shown in F' . 3in ig. a .
The propagation speed of the che c aotic region is
es imated by applying the marginal-stability a

xexp[t( f"o(x, t)dx -Qt]] [p(x, t) &0] into E ~ I

selected
g e resulting equation around th

d plane wave as p = p + & e'"er '
un e

f(kx' ~g )
e, p=K+

, where tl =p„K*'—q p p =

+ P»K* ', q&, we get the following dispersion re-
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s eed an
n wave number; v*, K*, theoretical

K s
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FIG. 4. Spatial and temporal power spectra of p in
the chaotic region for parameters of Fig. 3. (a) Tem-
poral power spectrum of g (x =180, t & 30); (b) spatial
power spectrum of (jt (» & 300, t = 100).
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lation:

&o'= W(k),

where ~ = ~ —2p„kK" + t'(qt p, -k'p )atnd

W(k) = —q, 'p, ' —2 p„q„p,k'

+ k'(p„'k'-4p, 'K*')

+ 4i p, kK*(p„k —q„PO).

(10)

The stationary-phase and marginal- stability
conditions in the moving frame with a constant
velocity c~ give

2tu (c~ —2p„K*—2i p, k) = d W/dk,

Im(d = c*Imk.
(11)

(12)

The velocity c* can. be determined as a root of

FIG. 3. Transition to chaotic state for p„q„=1,p;
= —1, q; =0.5, y=2 (p„q„+p&q& —0.5) (a) Contours of
etlua1 !g(», t) ! vs» and f; (b) spatial patterns for Betj(
(solid curve) and Img (dotted curve) at t =100; (c) tem-
poral transition to chaotic state at g = 180.

Eels. (10)-, (12) and numerically calculated values
of c* are found to agree approximately with ob-
served speeds (see Fig. 1). In the examples in
Fig. 1 propagation speeds of selected patterns
are greater than those of the chaotic region and
a coherent pattern coexists with a chaotic region.
ln other words, there occur the spatiotemporal
transition from an unstable fixed point (g =0) to
a limit cycle (which produces a coherent spatial
pattern) and the transition from the limit cycle to
a chaotic state. Figures 3(b) and 3(c) show such
spatial and temporal transitions, respectively.
When the modulational instability becomes strong
enough that p„q„+p; q, is slightly smaller than
1 (note !p„q„!=1, p;q;&0), a coherent pattern
disappears and a direct transition from g =0 to
a chaotic state occurs. Spatial and temporal pow-
er spectra of g in the chaotic region indicate
that temporal development of $ is as chaotic as
spatial variation is, since the width of the tem-
poral spectrum normalized by a peak frequency
is the same order of magnitude as the normal-
ized width of the spatial spectrum (Fig. 4). The
peak frequency and wave number are slightly
smaller than those of a selected periodic pat-
tern, which are indicated by arrcmr s in Fig. 4.

As concluding remarks, we should note the fol-
lowing points. The first result that a selected
pattern is modulationally unstable is quite differ-
ent from the previously discovered selected pat-
tern' which is stable. This fact is essential to
the subsequent transitions to a stabilized pattern
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or a chaotic state. Secondly, the transition to a
chaotic state investigated here is a new type of
transition to turbulence in the sense that the
transition from a periodic pattern occurs spatial-
ly and temporally for fixed external parameters.
This means the coexistence of a periodic pattern
and a chaotic state for the same parameters.
Previous studies ' treated only the transition to
turbulent motion associated with changing exter-
nal parameters. Finally spatial inhomogeneities
drive chaos in our model since the modulational
instability is its origin and spatial chaos is as
strong as temporal chaos. Such a chaotic state
is in contrast with chaos in a perturbed sine-
Gordon system where temporal chaos is dom-
inant. "
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