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It is shown that a modulationally unstable pattern is selected and propagates into an ini-
tially unstable motionless state in the one-dimensional generalized Ginzburg-Landau equa-
tion. A further spatiotemporal transition occurs with a sharp interface from the selected
unstable pattern to a stabilized pattern or a chaotic state. The distinct transition makes a
coherent structure coexist with a chaotic state.

PACS numbers: 03.40.Kf, 05.70.Ln

A coherent structure and a chaotic state are
two distinct states of nonlinear dissipative wave
systems. In this Letter, we investigate spatio-
temporal transitions from an unstable motionless
state to a coherently oscillating state and a chao-
tic state. As a model equation describing such
phenomena as generally as possible, we take the
generalized time-dependent Ginzburg-Landau
equation:

Wy + Dy +ql W12 Y =iy g, (1)

where p =p, +ip; and 9 =¢, +iq; and we assume
that | p,l =g,/ =1, p;<0, ¢;>0, and y>0. This
equation has a quite wide range of applications
such as a phase transition in nonequilibrium sys-
tems,! Bénard convection,? Taylor-Couette flow,®
plane Poiseuille flow* in fluid systems, drift dis-
sipative waves in plasma physics,’ chemical tur-
bulence,® and ionization waves in the glow dis-
charge.” The following three different states are
well-known solutions of Eq. (1): a motionless
-state (¢ =0), periodic patterns described by fi-
nite-amplitude plane-wave solutions, and chaotic
states.®’® The crucial question is how and under
what condition a localized initial disturbance
grows up into a periodic pattern and a chaotic
state. A striking result of our investigation is
the occurrence of a sharp selection of a modula-
tionally unstable pattern although many other
stable patterns are possible when p, q, + p; ¢; <0.
Even in the case p, 4, + p; 9; > 0 where any equilib-
rium patterns (finite-amplitude plane-wave solu-
tions) become unstable for long-wavelength per-
turbations, a selected periodic pattern can propa-
gate in the motionless state, accompanying a
chaotic region. As a result of this, the coexis-
tence of a coherent state and a chaotic state oc-
curs with a sharp interface.
(1) The transition from a quiescent state to a

periodic pattern can be described by a shock so-
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lution:
lp:d)oel(l(x-ﬂt)a(x_vt)’ (2)
Q=erz—qu lpolzg |lpoI2=(7’+P5K2)/Qi, (3)

where K and v are chosen so that W\ vanishes at
one infinity and approaches 1 at the other infinity.
It may be instructive to show the following expli-
cit solution which assures the existence of such
K andv:

e {14 ertewnpur, o
a==Bx(2+B%)M2

(5)
B=%(prqr+pi ql)/(prqi-piqr)’
2 _ -Ay
k= q;+ (A/p;)(ap; —2p,)? >0,
(6)

A=(p,q:=p:9,)/3alpl?,
K=(=-2p,/p)k, v==3|pl>k/py, (7

where A can be always taken negative so that

k2> 0 by the choice of an appropriate branch of a.
Another interesting but implicit solution is ob-
tained by the marginal-stability condition intro-
duced by Dee and Langer® for a different problem.
This condition says that small disturbances near
the shock front neither grow nor decay in the
frame moving with the shock and gives the shock
speed v * and the wave number of the pattern be-
hind the shock K* as

v*=2[plKp, Kn=(-v/p)""?, (8)
K*=[(Q,|PIiP¢I‘I|)/(Prqi"quT)]Km, (9)

where a branch of K* should be chosen so that
|K*| <K, . A qualitative form of J can be ob-
tained by the explicit solution (4) since, as we
see later, values of v* and K* are close to those
of the explicit solution for most values of pa-
rameters. (The precise form of P is numeri-
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cally obtained and will be published elsewhere.)
Numerical integrations of Eq. (1) under localized
initial conditions are performed by means of the
Adams-Bashforth explicit scheme'® with mesh
sizes At =0.055 and Ax =0.3. As localized in-
itial conditions, we take a hyperbolic secant type
of disturbances with various amplitudes and
widths and it is confirmed that our results are
insensitive to such initial conditions except ini-
tial transitional phases. The accuracy of num-
erical experiments is checked by changing mesh
sizes. As exhibited in Fig. 1, results of our nu-
merical simulations show that definite values of
speed and wave number (v* and K*) are selected
according to the marginal stability condition
when p,q,+p;9;<0 or p,q,+p,; q; is positive but
not close to 1. A typical propagation pattern is
shown in Fig. 2(a), where p,q, + p;4; == 3.2 and
¥(x,0) =sech(0.05x). It should be noted that the
marginal-stability condition depends only on lin-
ear properties of the motionless state and all se-
lected patterns in Fig. 1 are found to be unstable
to modulational disturbances (see Stuart and
DiPrima!! for the modulational instability).
Therefore, further transitions occur in the se-
lected pattern. Since there exist stable longer-
wavelength states than the selected one in the
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FIG. 1. Selected speed (v) and wave number (K) of
periodic pattern vs various values of p,q, +p;q;: v, Ky,
observed speed and wave number; »*, K *, theoretical
speed and wave number given by Eqgs. (8) and (9); v,
K., speed and wave number of the explicit solution (4);
¢y, observed speed of chaotic state; c¢*, theoretical
speed of chaotic state determined by Eqgs. (10)—-(12).
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case p,q, +p;q; <0, a stabilized longer-wave-
length region follows after the selected pattern.
However, the width of the stabilized region in-
creases very slowly so that the selected shorter-
wavelength pattern develops well and two distinct
coherent patterns emerge with a sharp boundary
in this case [Fig. 2(b)].

(2) The spatiotemporal transition to a chaotic
state occurs in the case p, q, + p;4; >0 where any
finite-amplitude plane waves become unstable.
When the modulational instability is not so strong
that p, q, + p; g, is positive but not close to 1, a
periodic pattern still emerges behind the first
shock front. As soon as the pattern selection oc-
curs, a chaotic region develops in the selected
pattern with a formation of the second front of a
slower propagation speed as shown in Fig. 3(a).
The propagation speed of the chaotic region is
estimated by applying the marginal-stability an-
alysis to the second front. Substituting ¢ = p*/2
xexpli{/*o(x,t)dx -Qt}] [p(x, t)>0] into Eq. (1)
and linearizing the resulting equation around the
selected plane wave as p = p,+ 0p e’ & =8 g =K*
+00e!® ) where Q =p,K* ~q,p,, Po= (v
+9;K**)/q;, we get the following dispersion re-
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FIG. 2. Transition to periodic pattern for p, g, =—1,
pi=—22,4q;=1, y=2 (p,q, +p;q; =—3.2) (a) Contours
of equal |p(x, )| vsx and ¢; (b) spatial patterns for
Rey (solid curve) and Imy (dotted curve) at ¢ =25.
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FIG. 3. Transition to chaotic state forp,q, =1, p;
=-1, q;=0.5, vy=2 (p,q, +p;q; =0.5) (a) Contours of
equal [y(x,?)|vs x and £; (b) spatial patterns for Rey
(solid curve) and Imgy (dotted curve) at ¢ =100; (c) tem-
poral transition to chaotic state at x =180.

lation: _
0= W(k), ' (10)
where ® =w —-2p, kK*+i(g;py—k*p;) and
W(k)==q,2p)> = 2p, 4, P, k*
+R3(p,2R% - 4D, 2 K*?)
+ 4ip RK*(p, k% = 4, P,).

The stationary-phase and marginal-stability
conditions in the moving frame with a constant
velocity c* give

20 (c*—2p,K* —2ip, k) =dW/dk, (11)
Imw = c*Im#k. (12)

The velocity c* can be determined as a root of
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FIG. 4. Spatial and temporal power spectra of 3 in
the chaotic region for parameters of Fig. 3. (a) Tem-
poral power spectrum of y (x =180, # > 30); (b) spatial
power spectrum of y (x < 300, #=100).

Egs. (10)=(12) and numerically calculated values
of c* are found to agree approximately with ob-
served speeds (see Fig. 1). In the examples in
Fig. 1 propagation speeds of selected patterns
are greater than those of the chaotic region and
a coherent pattern coexists with a chaotic region.
In other words, there occur the spatiotemporal
transition from an unstable fixed point (¥ =0) to
a limit cycle (which produces a coherent spatial
pattern) and the transition from the limit cycle to
a chaotic state. Figures 3(b) and 3(c) show such
spatial and temporal transitions, respectively.
When the modulational instability becomes strong
enough that p, ¢, +p; q; is slightly smaller than
1 (note | p,q,l =1, p;q;<0), a coherent pattern
disappears and a direct transition from ¢ =0 to
a chaotic state occurs. Spatial and temporal pow-
er spectra of ¥ in the chaotic region indicate
that temporal development of ¢ is as chaotic as
spatial variation is, since the width of the tem-
poral spectrum normalized by a peak frequency
is the same order of magnitude as the normal-
ized width of the spatial spectrum (Fig. 4). The
peak frequency and wave number are slightly
smaller than those of a selected periodic pat-
tern, which are indicated by arrows in Fig. 4.
As concluding remarks, we should note the fol-
lowing points. The first result that a selected
pattern is modulationally unstable is quite differ-
ent from the previously discovered selected pat-
tern® which is stable. This fact is essential to
the subsequent transitions to a stabilized pattern
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or a chaotic state. Secondly, the transition to a
chaotic state investigated here is a new type of
transition to turbulence in the sense that the
transition from a periodic pattern occurs spatial-
ly and temporally for fixed external parameters.
This means the coexistence of a periodic pattern
and a chaotic state for the same parameters.
Previous studies®’® treated only the transition to
turbulent motion associated with changing exter-
nal parameters. Finally spatial inhomogeneities
drive chaos in our model since the modulational
instability is its origin and spatial chaos is as
strong as temporal chaos. Such a chaotic state
is in contrast with chaos in a perturbed sine-
Gordon system where temporal chaos is dom-
inant.!2
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