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Logarithmic Density Dependence of the Transport Properties of Gases
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The authors have evaluated the coefficients of the first nonanalytic logarithmic term in
the density expansion for the transport properties of a gas of hard spheres, which is due
to long-range dynamical correlations between molecules. Their results resolve present
uncertainties about the magnitude of the effect, appear to be consistent with available in-
formation from molecular-dynamics calculations, and satisfy bounds for the logarithmic
contribution deduced from experimental viscosity data for real gases.

PACS numbers: 05.20.Dd, 51.10.+y

In the sixties it was noticed that the transport
properties of gases, i.e., the self-diffusion coef-
ficient D, the viscosity g, and the thermal con-
ductivity ~, cannot be represented by simple
power series in terms of the density p. Instead,
the ratios D/D„q/g„h/h„where Do, ti„and Ao

are the transport coefficients in the zero-density
limit as determined from the Boltzmann equation,
are expected to contain a term proportional to
p'lnp. An account of the history of this discovery
has been given by Brush. ' Microscopically, the
breakdown of a virial expansion for the transport
coefficients finds its origin in the fact that dy-
namical correlations between molecules persist
over distances large compared to the range of
the intermolecular potential. Long-range dynam-
ical correlations of a similar nature also lead to
the presence of long-time tails in the time-cor-
relation functions for the transport properties as
first discovered from molecular-dynamics simu-
lations. '

While the presence of long-range dynamical
correlations is now generally accepted, there
exists considerable uncertainty as to how they
modify the density expansion of the transport
properties. Theoretical estimates for the coef-
ficient of the p'lnp term have been reported by
Gervois and co-workers" and by Kan and Dorf-
man." In order to determine this coefficient
one needs to consider collision integrals that in-
volve sequences of collisions among four mole-
cules. The estimates of Gervois and co-workers
are based on an explicit analysis of these four-
particle collision integrals for a gas of hard
spheres. Kan and Dorfman also considered a gas
of hard spheres, but they replaced many of the
Boltzmann operators in the collision integrals by
a simplified operator from the so-called Bhat-
nagar-Gross-Krook model equation. The re-
ported estimates differ by one to two orders of
magnitude depending on the transport property

considered. The estimates of Gervois and co-
workers seem to exceed the possible values in-
ferred from experimental data for real gases to
be discussed below, while those of Kan and Dorf-
man involve some serious approximations. In
view of the conceptual importance of verifying the
kinetic theory for the long-range dynamical mol-
ecular correlations, we decided to make an ac-
curate analysis of the logarithmic density de-
pendence of the transport properties for a gas
of hard spheres.

According to the kinetic theory of gases, the
density expansions of the transport properties
can be written in the form

D/D, =1+D, p*+D,'p*'inp*+ D,p*'+. .., (la)

tl/rt, =1+rt, p++ rt, 'p+'inp*+ rt, p*'+. .., (1b)

A/R, =1+E,p*+ W, 'p*'1np*+ A.,p*'+. .., (1c)

in term. s of a dimensionless density p*= no',
where n is the number density and a the diameter
of the molecules. For a gas of hard spheres, the
coefficients on the right-hand side of the expan-
sions (1) are constants independent of tempera-
ture,

In the theory of Enskog, the density dependence
of the transport properties is attributed to the
excluded-volume effects that determine the virial
expansion of the equilibrium properties, while
successive binary collisions between the mole-
cules are assumed to be dynamically uncorrelat-
ed. In this approximation one obtains a power se-
ries for the transport properties as a function of
density with coefficients' D, E ———5&/12 = —1.309,
g, F ——+ V~/60 =+ 0.367, A., E =+ 23&/60 =+ 1.204,
D2 E' = g~ F' = A.2

E' =0, and D2 E=+ 0.455, q2 E

=+ 3.795, A.„E=+3.778. A more rigorous theo-
retical treatment shows that the coefficients
D j Qy and ~, of the linear terms also contain
dynamical contributions from sequences of suc-
cessive collisions among three molecules. The
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The coefficients D, ', g, ', and ~,' of the logarith-
mic contribution are determined by the asympto-
tic behavior of sequences of successive collisions
among four particles, renormalizcd so as to ac-
count for a mean-free-path damping between suc-
cessive collisions. A detailed analysis shows
that one needs to consider ten dynamically in-
dependent four-particle collision sequences, '
that are shown schematically in Fig. 1. As in the
collision sequences associated with the three-
particle collision integrals, ' the binary collisions
in the sequences can be either interacting or non-
interacting. In an interacting collision the tra-
jectories of the particles change as a result of the
molecular interaction. In a noninteracting colli-
sion the particles pass through each other's in-
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FIG. I. Four-particle collision sequences that need

to be considered in the calculation of the coefficients
+', g~', and g&'.

three-particle collision integrals have been eval-
uated by Sengers and co-workers" and also by
Brinser and Condiff. " Our best current estimates
are'

D = —1.201+ 0.002, g =+0.404+ 0.002,

+ 1.252 + 0.001.

teraction sphere without any change of velocity;
the noninteracting collisions need to be consid-
ered to correct for collisions between two mole-
cules that are prevented from occurring by the
interference of another molecule. The collision
sequences labeled I through IV are dynamically
the same as the three-particle collision sequenc-
es that need to be considered for the calculation
of the coefficients of the linear term, except for
an additional noninteracting collision with a fourth
particle; the other collision sequences are gen-
uine four-particle collision sequences.

The collision integrals are multidimensional
integrals that involve the positions and velocities
of four particles. Using analytical methods we
reduced the collision integrals associated with
sequences III and IV to two-dimensional integrals,
those associated with sequences I, II, VQ, and
X to four-dimensional integrals, those associated
with sequences VI and IX to six-dimensional inte-
grals, and those associated with sequences V and
VIII to eight-dimensional integrals. Further-
more, the contributions from sequences I a~d II
could be incorporated into a single four-dimen-
sional integral, thus reducing the problem to the
evaluation of nine four-particle collision inte-
grals. We have evaluated the two-dimensional in-
tegrals by numerical quadrature. The remaining
collision integrals were evaluated with the same
numerical Monte Carlo techniques previously em-
ployed in the evaluation of the three-particle col-
lision integrals. ' Our results are presented in
Table I. The quoted errors represent two stan-
dard deviations. Adding up the contributions
from the various collision sequences, we obtain

D2' = —0.46+ 0.04, g2' =+0.30+ 0.03,

A.,' =+ 0.21+ 0.03.

Our results are to be compared with the values
D, ' = —6.42 ~ 0.09, g, ' =+ 42 ~ 3, and ~,' =+ 422+ 34
reported by Gervois and co-workers" for a gas
of hard spheres (when corrected for a numerical
error') and with the estimates D, ' = —0.91, q~'

=+0.64, and A,
'= —1.03 found by Kan with the aid

of a Bhatnagar-Gross-Krook-model approxima-
tion. ' We conclude that the nonanalytic contribu-
tions to the density dependence of the transport
properties are very much smaller than suggested
by Gervois and co-workers. From Table I we see
that the individual collision integrals are of order
unity or slightly smaller. Since the individual
contributions can either be positive or negative,
the net effect is of the same order of magnitude
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TABLE I, Results of theoretical calculations.

Collision sequence
Contribution to

n2' X2'

III
IV

Iy II
V
VI
VII
VIII
IX
X

Sum

+ 0.6864+ 0.0001
+ 0.9344+ 0.0001
—1.236 + 0.008
+ 0.879+0.017
—1.297 + 0.012

0
+ 0.616+0.024
—1.206+ 0.019
+ 0.167 +0.001

—0.456 +0.038

—0.3939+ 0.0001
—0.5730+ 0.0001

+ 0.342+ 0.002
—0.448+ 0.013
+ 1.754+ 0.021
—0.600+0.006
—0.130+0.012
+ 0.393+0.011
—0.046+ 0.001

+ 0.298 + 0.030

+ 0.3474 + 0.0001
+ 0.5765+ 0.0001
—0.188+0.004
—0.162 +0.010
—0.145 +0.011
—0.057+0.002
+ 0.112+0.013
—0.685 +0.014
+ 0.118+0.001

+ 0.206 + 0.025

as the average value for the individual collision
integrals. However, as a consequence of cancel-
lations between contributions from the various
collision sequences, it is difficult to predict g
priori the sign of the logarithmic contribution for
the individual transport properties. While our re-
sults generally have an order of magnitude sim-
ilar to the estimates of Kan and Dorfman, we find
for the thermal conductivity an effect with the op-
posite sign.

In order to calculate the coefficients in the den-
sity expansion for the transport properties, one
customarily expands the nonequilibrium distribu-
tion function in terms of Sonine polynomials. "
The results reported here correspond to the first
Sonine approximation, i.e., only one Sonine poly-
nomial was retained in the analysis. We hope to
obtain estimates of higher-order Sonine approx-
imations in the future. While they are unlikely to
change the order of magnitude of the contributions
from the individual collision sequences, they
could affect somewhat the net results, because of
the delicate balance between contributions from
diff erent collision sequences.

Information concerning the transport properties
of a gas of hard spheres has been obtained from
molecular-dynamics siMulations. In Fig. 2 we

show molecular-dynamics results at low densi-
ties obtained by Alder, Gass, and Wainwright"
and by Erpenbeck and Wood" for the diffusion
coefficient. Unfortunately, we cannot make a
rigorous comparison between our results and the
molecular-dynamics data because of the absence
of a reliable theoretical estimate for the coeffi-
cient of the p' term which is closely correlated
with the p21np contribution. If we approximate
D, of the quadratic term by the value D, E from
the theory of Enskog, we obtain the curve shown

in Fig. 2 as a function of p*= no'. In this pro-
cedure we restrict ourselves to densities p - 0.1
since the theory of Enskog indicates that at den-
sities beyond 0.1 terms of higher order than p*'
will become significant. It appears that the cur-
rently available theoretical results and the mol-
ecular-dynamics data are at least consistent
with each other.

Several attempts have been made to detect a
logarithmic density dependence of experimental
data for the transport coefficients of gases.
Among the three transport properties concerned,
the viscosity is generally measured with the
highest accuracy. However, even for the best
experimental viscosity data one has not been able
to prove the necessity of including a p'lnp term
in the density expansion. As an alternative, Ees-
tin and co-workers assumed the validity of the
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FIG. 2. The diffusion coefficient ratio DJDp for a gas
of hard spheres as a function of p*= no . The data are
molecular-dynamics results and the curve is calculated
from the equation D/Dp —1+ D& p*+ Q' p* ln p*+ D2 zp* .
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Gas Temperature ('C) O~ff' (A) r/2'

CO2~
Krb
N c

2

Are
Ned

Hard spheres

31.6
25.0
25.0
25.0
25.0

4.54
4.11
3.73
3.62
2.57

0.4+0.4
0.0 +0.6

0+2
0+2
0+5

0.30 + 0.03

TABLE II. Summary of information from experimen-
tal viscosity data.

lead to an answer consistent with experim. ental
evidence for real gases.

We are indebted to J. R. Dorfman, Y. H. Kan,
and E.G. D. Cohen for valuable discussions. The
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Foundation Grant No. DMR 82-05356. Computer
time for this project was provided by the Compu-
ter Science Center at the University of Maryland.
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theoretical form (1b) for the density expansion
and tried to obtain bounds for the maximum and
minimum values of the coefficient q, ' that could
be consistent with the experimental viscosity
data."". The results are summarized in Table
II. The values quoted for g, ' are for Eq. (1b) with
p*= no, f~', where o,fq is an effective molecular
diameter chosen so that the experimental dilute-
gas viscosity g, is equal to its theoretical value
for a gas of hard spheres with diameter O.,ff .
The fits were made to experimental data at den-
sities p*& 0.1. A gas of hard spheres is not a
good model for the first density correction to the
transport coefficients, because g, is primarily
determined by short-range correlations. How-
ever, the logarithmic term for real gases arises
from the same type of long-range dynamical cor-
relations as for a gas of hard spheres. Hence,
we expect that the order of magnitude of g, ' for
real gases will be roughly similar to that for a
gas of hard spheres. From the information in
Table II we see that our theoretical estimate q, '

=0.30+ 0.03 for a gas of hard spheres is indeed
within the range of possible values consistent with
currently available experimental data. We con-
clude that an evaluation of the p'lnp term as
prescribed by the kinetic theory of gases does

'S. G. Brush, Einetic Theory (Pergamon, New York,
1972), Vol. III, p. 77.

B. J. Alder and T. E. Wainwright, Phys. Rev. Lett.
18, 988 (1967), and Phys. Rev. A 1, 18 (1970).

3A. Gervois and Y. Pomeau, Phys. Rev. A 9, 2196
(1974).

4A. Gervois, C. Normand-Alle, and Y. Pomeau, Phys.
Rev. A 12, 1570 (1975).

5Y. Kan and J. R. Dorfman, Phys. Rev. A 16, 2447
(1977).

Y. Kan, Physica (Utrecht) 93A, 191 (1978).
~S. Chapman and T. G. Cowling, The Mathematical

Theory of Nonuniform Gases (Cambridge Univ. Press,
London, 1970), 3rd ed.

J. V. Sengers, in Kinetic Equations, edited by R. L.
Liboff and N. Rostoker (Gordon and Breach, New York,
1971), p. 137.

J. V. Sengers, D. T. Gillespie, a.nd J. J. Perez-
Esandi, Physica (Utrecht) 90A, 365 (1978).

G. B. Brinser and D. W. Condiff, J. Chem. Phys. 59,
2754 (1973).

~~B. J. Alder, D. M. Gass, and T. E. Wainwright, J.
Chem. Phys. 53, 3813 (1970).

'2J. J. Erpenbeck and W. W. Wood, private communica-
tion.

'3J. Kestin, E. Paykoc, and J. V. Sengers, Physica
(Utrecht) 54, 1 (1971).
'4J. Kestin, O. Korfali, and J. V. Sengers, Physica

(Utrecht) 100A, 335 (1980).
5J. Kestin, O. Korfali, J. V. Sengers, and B. Kamgar-

Parsi, Physica (Utrecht) 106A, 415 (1981).
'6H. R. van den Berg and N. J. Trappeniers, Chem.

Phys. Lett. 58, 12 (1978).

2166


