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Unusual Soliton Properties of the Infinite Polyyne Chain
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Within a Peierls continuum description of the infinite polyyne chain fC =—Ck it is found
that the polymer possesses soliton excitations with charges + 2e, +e, and 0 and polaron
states with charges + e, + 2e, and + Be. An excitation {'polarexciton") consisting of an
electron and a hole bound by lattice distortion is also found and may be photogenerated
in the polymer.

PACS numbers: 71.50.+t, 71.30.+h, 72.60.+g, 72.80.Le

Linear chains of carbon atoms with alternating
single and triple bonds, i.e., gC -=C) „, are known

as polyynes. Experimentally, finite polyynes,
with a variety of terminal groups, have been
available for some time' ' and very long-chain
(i.e., effectively infinite) polyynes are thought to
be constituents of ca~byne, a crystalline quasi-
one-dimensional allotrope of carbon. ' ' Carbyne
has been of interest in astrophysics, ' where it is
thought to be a constitutent of interstellar dust,
and has been proposed as the thermodynamicalky
stable phase of carbon over a wide range of pres-
sures in the approximate temyerature range
2600-3800 K. ' Theoretically, ab initio Hartree-
Fock calculations" ' have suggested that, in the
linear carbon chain, the alternating polyyne con-
figuration $C = C).„ is preferred energetically to
the uniform-bond-length cumulene structure
@=C)'„. In this Letter, we point out that, within
a simple one-electron description of its electron-
ic & states, the infinite polyyne chain is a half-
filled Peierls insulator' in which the electrons
possess an effective internal degeneracy (N) etlual
to 4. This leads to an unusual variety of soliton
and polaron states and, in the continuum limit,
to the remarkable result that the infinite polyyne
chain is an approximate physical realization of
the N =4 Gross-Neveu model relativistic field

eory '0

Within the framework of a one-electron tight-
binding description, " the &-electron states of
polyyne are determined by the linear-chain Ha-
miltonian

H= H~ — g (t,.„,. c... ~ z c,. q+H. c.).

The chain consists of N, (N, —~) sP'-hybridized
carbon atoms labeled by j (j =1,2, . . ., N,). Each

carbon atom has two degenerate, orthogonal,
atomic p orbitals transverse to the chain axis.
The latter two orbitals are labeled by X (A. =1,2).
In (1), c. .. q and c, „q are fermion operators
which create or destroy, respectively, an elec-
tron with spin 0 in the ~th orbital of the jth car-
bon atom. To allow for the dependence of the
hopping integral t, , ; on the atomic locations,
we adopt the form

t, „,=t, -y(u, „-u,.). (2)

in which M denotes the mass of the carbon atom
and & a harmonic spring constant characteristic
of the linear sp' sigma bonding. In (1) the elec-
tronic energy is measured relative to the total
atomic p-orbital energy and there is one electron
per p orbital.

The linear chain Hamiltonian (1) describes two
degenerate half-filled & bands which couple to
the instantaneous positions of the carbon nuclei
in an identical manner. It follows, therefore,
that if allowance is made for the twofold degener-
acy of the electronic spin and we treat the atomic
displacements (u,j as a classical field, the
ground state of H is a half-filled Peierls insula-
tor' in which the electrons possess an effective
internal degeneracy & equal to 4. For the half-

In (2) u, denotes the displacement of the jth atom
from its position in a uniformly spaced carbon
chain of lattice constant a, while t, is the hopping
integral characteristic of the uniformly spaced
chain and -y is the derivative of t, +, , with re-
spect to the interatomic separation. HI. describes
the lattice energy in the absence of the overlap
of the atomic p orbitals,

H~ = &M Q .u 2 + &~Kg,. (u, „—u &)
s.,
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1=(4y'/KN )Q„gsi n'(ka) E„' (4)

for the equilibrium gap parameter &. For &/2&,
«1, which is the criterion for the validity of a
continuum description" of (1), (4) may be evalu-
ated analytically to yield & = (8 t,/2. 718)exp(- 1/
A. ,~). Note that the dimensionless electron-pho-
non coupling constant A., ~

= 8y /«to is Deice that
of the case &=2. If we take as representative
values for polyyne the values t, =3 eV, & =68.6 eV
A ', and y =8 eV A ' employed for polyacetylene, "
we obtain 2& =5.0 eV. Clearly the condition &/
2 t, «1 is not well satisfied, implying strong elec-
tron-phonon interaction for polyyne. However,
the exact solution of (4), obtained numerically,
is 24 = 5.88 eV, indicating that the weak-coupling
limit is not a prohibitively bad approximation.
Another important physical property of the
Peierls insulator is the long-wavelength optical-
phonon frequency" &,. For the present model of
polyyne it immediately follows from a related cal-
culation by Rice and Mele" that

= (16y 4 /MN )g sin (ka)E„
= (82y /7rt M) for (b, /2t ) «1.

(5)

(6)

Evaluations of (5) and (6) with the representative
values introduced above yield ~, = 1941 cm ' and
+=2200 cm, respectively. A definitive experi-
mental value of , for polyyne is, to our knowl-

edge, unknown, but the latter calculated values
of , together with our estimates of 2& are con-

filled Peierls insulator ordinarily encountered,
e.g. , polyacetylene, "'"& =2.

The ground-state displacement field is u;
=+ (-1)'u, (all j), where u, is a positive constant,
while the energy spectrum of the & states is

=+ [e 'yb. 'sin'(ka)]' =+E

In the latter, & denotes the allowed wave vectors,
—(w/2a) ~ k & (n /2a), c„=2 to cos(ka), and 2& = 8y uo

is the magnitude of the I'eierls gap. The index
$ combines the electronic spin o and band index
& and may be assigned the values $ =1, 2, 8, and
4 corresponding to the four possible configurations,
(&, 1), (&, 1), (&,2), and (&, 2), of the subscript
(o,X). Within this scheme the one-electron ener-
gy level with wave vector k may formally contain
up to four electrons. The total ground-state ener-

gy is

E = (No/2) (K/4y2)b 2 —Q „gE~,

which on minimizing with respect to & leads to
the equation

z ~"axE =Q' e„,+, —~'(x).
n, g ~ "I/2

(8)

The prime on the summation symbol in Eqs. 7(c)
and (8) denotes summation over occupied states.
These equations apply for the case of a static in-
homogeneity. The ground-state solutions of Eqs.
(7) are plane waves with e„~=+e, =~ (b.,' yv ~'k')'"
where, here, the wave vector 4 is measured rela-
tive to the zone edge &/2a and 2&, denotes the
(homogeneous) ground-state dimerization gap.

By established techniques, "Eqs. (7) can be
shown to be identical to the static, semiclassical
equations for the Ã =4 Gross-Neveu model rela-
tivistic field theory. ' Hence, all the exact soli-
tary-wave solutions can be readily cataloged.
First, ther e are the kink" soliton solutions for
which h(x) =+ &otanh(x/$, ), where the soliton half-
width $, =vF/&, (= 2.5a for polyyne, versus = 8.5a
for polyacetylene). The corresponding eigenspec-
trum consists of a localized midgap state &, a=0
and a continuum of phase-shifted plane-wave con-
duction-band and valence-band states with ener-
gies &„,q=+&„(4&0). However, since N=4, the
presence of the soliton removes a total of 2 =4
& ~ states from the filled valence band. " Conse-
quently the charge associated with the occupation
of the midgap state will always be screened by
a charge deficit of precisely two electrons. Since
the midgap state may accommodate up to four
electrons it follows that the solit.ons arise with
the charges + 2e, +e, and 0, where e denotes the

sistent with the results of ab initio calculations
performed by Karpfen. '

We now focus on the main topic of this Letter.
Although we expect that the continuum limit' of
the discrete model (1) will provide only a semi-
quantitative description of polyyne, we can, how-
ever, expect it to yield accurately the polymer's
spectrum of soliton and polaron states, In the
continuum limit of (1) the one-electron eigenval-
ues &„q and the local gap parameter &(x) are de-
termined by the coupled equations" (I -=1)

c„(u„,(x) = iv „v-„u„((x)+ &(x)v„,g(x), (7a)

e„&v„P)=iv FV„v„~(x)+&(x)u„,P'), (7b)

a(x) =- (4y'/K) Q„' g[u„q*(x)v„P)+c.c.], (7c)

where UF =2t,a and the eigenstate correspond-
to ~„g is the two-component spinor P„q= (u„~v„g,
normalized according to Jdx („,*g„,q=1, where
the integration extends over the length of the

polymer L =ÃOa- . The total energy of the poly-
mer is
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charge on an electron. The formation of these charge states is depicted in Table I. The variety of
spin states and internal degeneracies with which they arise is also indicated in Table I. Topological
constraints imply that solitons can be created from the ground state only in && pairs, and from Eq.
(8) we find the minimum energy of such a pair to be 2E, = 2(4~/m). The creation of the pair involves
the excitation of four electrons from the valence band.

Second, there are the polaron solutions, for which i(x) has the form

b e (x') =&o —Kev Fftanh[K8 (x +y 8}]—tanh[&e Q -y g)]],
in which &e =$, 'sin&,

y g = ((,/sin&) tanh '[tan(&/2)],

and 8 is an angle defined in the range 0- 8 & (&/2)
and determined by

e = [(a+I )/4](~/2). (10)

The physical signiGcance of n and h is as follows.
The polaron distortion (9) leads to an eigenspec-
trum consisting of two localized intragap states
with energies &, &

=+ &, cos6) and a spectrum of
conduction and valence-band states with energies
&„,g

=+ &„(k& 0) that are phase shifted in the re-
gion of the polaron distortion. The occupation of
the upper gap state &+ is denoted by n (0 ~n ~ 4)
while the number of holes in the lower gap state

is denoted by h (0 ~h ~ 4). The phase-shifted
valence-band states give rise to a local charge
deficit of precisely four electrons and the net
charge on the polaron is Q = {n -h)e. The forma-
tion energy of the polaron state is

E~ (&) =2E, sin&.

The charges, gap-state configurations, spin

! states, and internal degeneracies of the polaron
solutions admitted by (10) are exhibited in Table
II. The principal polaron states are a polaron
(Q =+ e), a bipolaron (Q =+ 2e), and a tripolaron
(Q =+ 8 e}. These constitute the lowest-lying ioni-
zation states of the polymer. Their respective
gap states lie at + 0.924„+0.71&„and + 0.38&„
while their corresponding widths 2y g are 1.07$»
1.23)„and 1.76(,. It is evident from Eqs. (10)
and (11) that a fourth electron or hole added to
the polymer leads to the spontaneous formation
of two (widely separated) doubly charged solitons.
It is noteworthy, in contrast to the case Ã=2,
that an exact solution for an excited state, in-
volving the promotion of an electron from. the low-
er to the upper gap state (so n =2, h =1 or u =1,
h =2), exists for the singly charged polaron.

%e note from Table II that there also exists a
neutral polaron solution (n =h =1). This corre-

TABLE II. Characteristics of polaron states of poly-
yne,

'FABLE I. Characteristics of soliton states of polyyne.

charge gap-state
occupancy(

W W W

W W W W

spin
states

S =1/p

internal
degeneracy

stable
excited state

charge gap. state
occupancy( )

spin
states

internal" degeneracy
2e

W W W W
S= 1, 0

2e S=O
W W W W

s

S=1,0 16

S=1,0 s —1/&

S =&/g
2e S=1,0

2e S=0
3e s

Each solid circle denotes an electron. The gap
states are screened by a valence-band charge deficit of
two electrons.

Each solid circle denotes an electron. The gap
states are screened by a valence-band charge deficit of
four electrons.
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sponds to an excitation in which an electron and a
hole are bound by lattice distortion, i.e., a
"polarexciton. " Since its excitation energy is
E~' =2K, sin(~/4) =~2E, & 2b.„it is the lowest-
lying individual electronic excitation of the poly-
mer (i.e. , a relaxed electron-hole pair excited
in one of the two degenerate & bands). However,
we note that two polarexcitons are unstable with
respect to decay into a soliton pair since ~p
=2 2E, &2E,. Thus, the lowest-lying thermal ex-
citations of the polymer will be solitons. We ex-
pect, however, that the photoexcitations of the
polymer at low temperature mill be polarexcitons.
An electron-hole pair photogenerated in the poly-
mer will initially relax into a polarexciton. The
latter will remain the dominant photogenerated
species provided that the electron-hole recom-
bination rate for the polarexciton proceeds much
faster than the rate for the thermal decay of the
polarexcitons into solitons.

Finally, let us comment on two obvious limita-
tions of our treatment of the infinite polyyne
chain: (l) the absence of electron-electron inter-
actions in H and (2) the neglect of quantum fluc-
tuation effects (QFE) in (u,}.First, if we imagine
treating (i) by adding a Hubbard U term to H we
see that physically the interaction should, to low-
est order, affect only electrons in the same orbi-
tal. Thus, it will split the degeneracy of the kink
soliton states, even those with the same charge
but different orbital distributions. This effect, if
eventually observed experimentally, could pro-
vide important insight into the relative impor-
tance of electron-electron and electron-phonon
interactions in quasi one-dimensional conjugated
polymers. Second, with use of arguments previ-
ously applied to polyacetylene (i.e., N =2),""the
QFE can be "bracketed" by considering the M
-~ andM-0 limits of H. For~-~, the QFE
vanish, and the mean-field-theory results we
have derived become exact." For ~-0, & (in
the continuum limit) becomes identical to the N
=4 Gross-Neveu model at the ful/ quantum leuel. so

The spectrum of this quantum field theory is
known exactly ' and is, in fact, the same as the
mean-field-theory result for & =3. Hence we
know that even for M =0, QFE will not destroy
either the dimerization or the rich variety of
soliton and polaron states.
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of polyyne chains.
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