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It is suggested that the inequality m~ & 2m~ is a rigorous result in quantum chromody-
namics. The analog for a (q& ...qz) baryon in SU(+ is mz &(219)mz. The inequality is
proved for weak coupling and a version of the strong-coupling expansion where a separa-
tion & =II&2+ II23+ II3& of the problem can be achieved. Implications for quantum0 f0203
chromodynamics and composite models are briefly discussed.

PACS numbers: 12.35.Eq, 12.35.Kw, 12.70.+q

mg ~ (2 N)m~, (2)

for baryons composed of N preons in the funda-
mental representation. This precludes in such
models massless fermionic composites (due to

(I) The baryon-meson mass ratios along with
other approximate phenomenological & factors
served as early support for the quark model. I
suggest that in QCD this relation transforms into
a rigorous inequality:

3
2SZQ p

connecting a ground-state baryon and the "cor-
responding" meson (e.g. , y for 0 ) to be defined
more precisely later.

While lattice techniques may soon facilitate re-
liable mass calculations, ' the importance of exact
relations can hardly be overemphasized. In addi-
tion, the inequality has far-reaching implications
for composite models of quarks and leptons based
on preons with gauge interactions. ' The general-
ization of Eq. (1) to SU(N) is

V„=[1/(N —1)]V„- (3)

is the potential between any quark pair in the
baryon. The 1/(N- 1) overall ratio of color co-
efficients factors put completely and therefore
the qq and qq should be in the same spin, orbital,
etc. , states.

Consider now the Hamiltonian for a N = 3 bary-
on:

unbroken flavor chiral symmetry) without mass-
less bosons (which would naturally arise if this
chiral symmetry was spontaneously broken. ').

(II) To motivate the inequalities assume first
that the dynamics of the three-quark system is
describable by two-body interactions. Perturba-
tively thi. s would be the one-gluon exchange. Non-
perturbative infrared effects most likely modify
the gluon's propagator.

I abstract only one aspect of the gluon exchange—the ~, ~ X, coupling. If this yields a potential
V„- between a quark and an antiquark when the
latter is coupled to a color singlet, then

(4)H, (q, q, q, ) =T,(q, )+ T, (q, )+T,(q, )+V, , +V, , +V, ,
With use of V„=—,

' V„-, 2H3 can be rearranged into a sum of three Hamiltonians for three q,.q,. subsys-
tems:

2Hs= (T~+ T2+ V»'~) +(T2+ T3+ V2s" ) + (Ts+ T, +Vs, '~) = H,2+H2s+ H„.

p, is a wave function in the 1-2-3 space. However, since H» (say) operates only on the variables of
particles 1 and 2, & g, l H» l g, & is a sum of expectation values of the H» between states in the 1-2
space only.

To show this let us formally expand

g, = P q&(1)q (2)y. (3)C,

Let g, (1,2, 3) be the lowest energy state of the three-quark system (ground-state baryon). Taking
the matrix elements of (5) we have

2M, =2&q. lH, I q. & =&0.lH»l q. &
+ &(.IH2. l t.& + &o. lH„I c.&. (6)

with y, a complete one-particle set and & 4,1$,& =1 implying 2 & „I C~, ,„l'=1. Then as a result of

&q, (1)q (2)q„(3)IH„I q, (1)q ~ (2)q„(3)&=&..&q, (1)p„(2)IH,.lq, (1)q (2)&, (7a)
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we have

&43l&.l 4.&
= Z.&42" IH»lt. "&

with

..q, (1)q „(2)

(Vb)

Hence

P.&q."I C."&= 1. (Vc)

The variational principle implies for each of the
expectation values in (Vb)

2M~ o Mi2+ M23+ M3~.

In Eq. (8), M», M», . . . are the masses of qq
subsystems (1,2), (2, 3), . . . in the angular mo-
mentum state, etc. , imposed by the baryon.
Thus, A" consists of three u quarks all with
parallel spins adding up to S = —', . The corre-
sponding meson states are uu triplet, i.e. , the
p or z mesons. In both cases we have just s-
wave quark-quark or quark-antiquark pairs.
Equation (8) becomes~

m~++)2m, (1238) 1155).

Likewise,

m„-) ~m (1670) 1520).

Also,

m„, = —;m, (m...=4.85 GeV).

Likewise, for mixed flavors,

) 2(m&+2m» ) (1530 ) 1400),

m~" ) ( p m + m» ) (1385 ~ 1280),

and for the charmed baryon analog,

(8)

m~, ) —,'(2mD. + m p) =2.4 GeV.

The SU(N) generalization is straightforward:
With use of Eq. (3), (N-1)H b~'"( „q. . ., q) is
reexpressed as a sum over all (", ) mesonic 0,,
and the rest of the argument ensues.

In the nucleon we have two antiparallel spin
pairs and hence Eq. (8) would imply m„) 4 m

~3+ gal„~
The T; and V;,. of Eq. (4) could be any relativis-

tic or nonrelativistic spin-, coordinate-, ener-

with E» the lowest energy (or mass). Using (7b)
and (Vc)

& C. I fr,.I q.&.-E.E,.& C.
"

I C."& - E...
and finally we have the desired inequality

gy-, etc. , dependent one- and two-particle opera-
tors, respectively. Only the assumption of sep-
arability into two-body subsystems and the (N
—1) ' Clebsch factor of Eq. (3) are required.

(III) The last separability assumption does not
hold in the electric string confinement —"Y"—picture of baryons. I therefore rederive next
the inequality in the strong-coupling limit.

I use the Hamiltonian lattice formulation, '
though this section's argument could (and will)
be given in the continuum. The Hamiltonian is

g' P &'+, g tr(&Vote')+H. c. (9)
1

link s g pl aqu ettes

Take first three heavy quarks located at r„r„
and r3.

For strong coupling g-~ the first term domi-
nates and the energy is minimized by having the
three quarks interconnected via a Y-like network
of flux lines (three flux lines can join at a point
via an e,„coupling), and E„=v5~'Ir, —xl with x
the junction point and a the string tension.

The triangular inequality implies 2E„-0
x g, , , Ir,. —r, I. But the latter is just the total
energy of three meson subsystems.

These energies should be introduced as poten-
tials into the next step of an adiabatic slow-quark
approximation. Having 2V„~ V» + V»+ V» in-
stead of 21/'3=V»+V»+V» as in the earlier sec-
tion would reinforce the derived inequality (8).

The arguments generalize to SU(N) baryons;
simple and repeated use of the triangular inequal-
ity shows that

(N —1)V,
n

=(N 1)oglr,. —xl) 0 g— Ilr,. —r,.l =P V, ,(qq).

(IV) Having proved the inequality in the weak
perturbative limit, and the other extreme of stat-
ic quarks and strong coupling, I proceed to the
case of static quarks but arbitrary couplings. Us-
ing states in the strong-coupling basis I describe
the meson by a. path functional P p«q, C(P»)IP»&,
i.e. , a superposition of paths connecting r, and
r, on the lattice.

The diagonal elements of the meson Hamilto-
nian are g' times the lattice length of the path.
Off-diagonal elements of size I/g' connect paths
which can be deformed into each other by the ac-
tion of a single plaquette. Likewise, the baryon
is given by the path functional Q z,@, C(P», ) I P», &

and again all nonvanishing matrix elements con-
necting paths differing by a single plaquette equal
I/g '.
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2Hy2g P(H» + H»+ H»)P (10)

with P an appropriate projection operator.
This constraint on the trial states will enhance

the inequal. ity making it more difficult to minimize
(IH„I), (I H»I), and (IH»l) simultaneously. The

In addition, there are 1/g
' off-diagonal ele-

ments involving operations with plaquettes which
raise the representation content of a given link,
and/or generate new "junction points. "

Even the approximation of keeping only mini-
mally excited links and no string intersections
or junctions except for the single junction re-
quired for the baryon represents a formidable
problem. While neither meson or baryon ener-
gies can be exactly computed the comparison of
the Hamiltonians can reinstate the inequality.

Within the approximation adopted here the Ham-
iltonian for the baryon q, q, q, problem' can be
rewritten as the sum of the three q; q,. Hamilton-
ians. ' This is manifest for the diagonal terms by
simply separating 2(P», ) at the junction point,
yielding P~, + P,„, + P3„,. Also any operation
which does not directly involve the baryon junc-
tion modifies the path connecting 1 and x or 2
and x or 3 a,nd x. In the first case, this opera-
tion is included in H„and H» as modification of
a path connecting 1 and 3 and a path connecting
1 and 2. The same applies to the other two cases
with appropriate cyclic permutations. This sug-
gests that H„,=H„+H„+H„. With use of the
baryon ground-state functional I B)= Q C(P», )
x IP,») as a trial functional on the left- and right-
hand sides of the last equation the procedure of
deriving Eq. (8) from Eq. (5) can be repeated.
In particular, since H» does not operate on the
string (3, x) connecting to quark 3, we have in a
self-explanatory notation

(P„,IH„IP„,') =5(P„,P,„')(P,„,IH„IP,„,').
The analog of Eq. (7) al. lows us to express the
right-hand side as a sum of expectation values of
P$2 9 H23 9 and H» in just a qq -type w ave functional.
With use of the normalization P IC(P», )I'=1 and
the variational. argument for each expectation
value the basic inequality (8) is rederived.

While any component (i.e. , speeifie path P», )
of the baryon functional can be split as indicated
above into a sum of three qq paths the reverse is
not true. Only if the (12), (23), and (31) paths all.
intersect (at one single point in the present ap-
proximation) can they serve as a candidate for the
baryon functional. This means that the correct
operator relation is

triangular inequal. ity of the last section is a sim-
ple manifestation of this effect in the strong-
coupl. ing limit.

(V) Instead of interpreting the energies for
static quark potentials I simplify and generalize
the derivation by introducing the kinetic energy
terms Qg-„U-„-„„,g-„+-„.+ H. c. This allows the
quarks to move so that the r; become dynamical
variables rather than frozen parameters.

Neglecting pairs we can split this added piece
into three parts Q'T,. according to which of the
quarks 1, 2, or 3 is moved (T, inct. udes also the
mass term m, g„~g„ for quark 1 etc.). From the
analogy to Eq. (5) the addition of 2(T, +T, +T,) to
both sides of Eq. (10) will not change the inequal-
ity. In particul. ar, since moving a'quark at the
end of one of three strings joining at a single
junction x will still yield a configuration of the
same type, the projection P is irrelevant for the
T ~

Thus, we have 2H», ' = P (H»' + H»' + H»')P
with H' including al.so the quark kinetic terms,
and again by foll.owing the procedure used above
we obtain the inequality for this case as well.

The separation of 2H~(1, 2, 3) utilized above is
not evident for a baryon consisting of an inter-
connected maze of excited links. '

(Vi) The variational. arguments used in deriving
the inequality apply to the sum of energies of the
first n states. One may apply the inequalities to
radial excitations relating N, roper resonance,
and p'm' states, etc. One coul. d also try to re-
late L c 0 states in baryon and mesons.

Conceivabl. y other rigorous inequal. ities can be
derived for other quantities such as coupling
constants, charge radii, or scattering lengths
[it is amusing to note that another —', approximate
relation o'„,(BB)=—2v„,(M~) is in effect phenom-
enologically an inequality: v„,(BB)) 2~ e'„,.(Ms)].

The inequality serves as another constraint on
the program of obtaining the l.ight quarks and lep-
tons as bound states in a confining gauge theory
which does not spontaneously break a chiral fla-
vor symmetry.

I benef itted from discussions on this subject
with I. J. Muzinich and Claudio Bebbi while visit-
ing Brookhaven National Laboratory and subse-
quently with Ralph Amado and Elliott Lieb at Los
Alamos National Laboratory. I am particularly
indebted to Elliott Lieb for proving the result of
Sec. II.

Note added. —After completing this work I
learned from Herbert Neuberger that a weaker
rigorous meson-baryon mass inequality was
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proved by Weingarten' using the Euclidean lattice
approach. Subsequently, I became aware of re-
l,ated work by rafa and %ittenio and %ittenii which
does not, however, address the meson-baryon
inequal. ities dire ctl.y.

~'~On leave of absence from Tel Aviv University,
Bamat Aviv, Tel Aviv, Israel.

~For a recent review, see Michael Creutz, Laurence
Jacobs, and Claudio Bebbi, Phys. Rep. 95, 201 (1983).

G. E. 't Hooft, in gecent DeveloPments in Gage
Theories, Proceedings of the Cargese Summer Insti-
tute, 1979, edited by G. E. 't Hooft etgl. (Plenum, New
York, 1980).

3Taking the p rather than the ~ makes a little differ-
ence but avoids the gluon annihilation channel. Since
this has no counterpart in the baryon the inequality
strictly applies only with flavor nonsinglet mesons.

The zz in the nucleon couples to S= 1; the require-
ment of overall (Mud) spin ~ implies that each gd quark
pair is in S=1 (8=0) state with probability 4 (a~). This
correction of a mistake in the original manuscript was
kindly pointed out by S. L. Glashow.

~J. Kogut and L. Susskind, Phys. Bev. D ll, 395
(1975).

It holds for both the usual Euclidean and the "taxi-
driver" metric of a lattice ~U—= Ix;-x, I+ ly; -y; I+is;-z;I.

e lattice Hamiltonian is given by Eq. (9) with sums
extending over all links and plaquettes. However, with
a quark at F& and an antiquark at F2 we can define the
meson Hamiltonian as the links involved in the string
network connecting 1 and 2 and the plaquette directly
operating on such links. Disconnected vacuum loops
should indeed be left out to obtain the proper meson
energy. Alternatively, we can define the space of paths
in w'hich II&~ operates by taking any simple string of
minimally excited links joining 1 and 2 and operate on
it any number of times with Z tr(UUETtU ) + H.c. without
ever creating disjoint pieces. The baryon Hamiltonian
is likewise defined in the space of strings intercon-
necting the three quarks.

It appears that a weaker versio~, m& —~&, which
is of little use for QCD but sufficient for the qualitative
implications for composite models can be more readily
obtained in this case. We just compare the energy of
one qq pair, say at 1,2, with that of the more complex
and constrained baryon qqq~ q3 functional.

~D. Weingarten, Phys. Rev. Lett. 51, 1830 (1983).
' C. Vafa and E. Witten, Nucl. Phys. (to be published).
"E.Witten, to be published.
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