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Nonmaximal Isotropy Groups and Successive Phase Transitions
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A phenomenological Landau model which describes a simple continuous transition from
a high-symmetry phase to a phase associated with a nonmaximal isotropy subgroup —hith-
erto conjectured impossible~s constructed. A novel feature of the model is that a single
order parameter describes successive simple continuous phase transitions between three
or more phases of different symmetries. Effects of fluctuations are considered within a
renormalization-group approach.
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One of the most frequently used theories of con-
tinuous phase transitions is the phenomenological
Landau theory' and its renormalization-group
extensions, ' Within the Landau theory a continu-
ous transition from a high-symmetry phase (e.g. ,
a crystal structure with a space group symmetry
Q, ) to a low-symmetry phase is determined by
minimizing a fourth-degree Q,-invariant pol, ynom-
ial F((), the Landau free energy. The multicom-
ponent order parameter g spans a real represen-
tation I" of 9, which is, for simple continuous
transitions, irreducibl. e on the real numbers. At
the equilibrium, the order parameter minimizes
the free energy and its symmetry is the low sym-
metry.

An explicit minimization of the free energy is
often a nontriviaI. probl. em and several auxiliary
criteria were developed. ' In particul. ar, it is
important to observe that given the representa-
tion I' only the isotropy subgroups may be select-
ed by the order parameter" (for given I' a sub-
group Qy of q, is said to be an isotropy subgroup
if there is a direction of the order parameter g
which is invariant under 8, but not under any
larger subgroup of 8„' 8, is also called the stabil-
izer or the little group of P). However, only an
explicit minimization can determine which partic-
ular direction and, consequently, which particu-
lar isotropy subgroup will be selected. Such ex-
plicit minimizations in a number of concrete ex-
amples led to an essentially empirical conjecture,
the maximality conjecture': In a simple contin-
uous transition, a low-symm. etry group is a m.ax-
imal isotropy subgroup of 8,. This conjecture
was refined and extended to the Higgs mechanism
of gauge field theories to state, in its most gen-
eral form: A fourth degree, bounded from be-
low polynomial in n real variables P„P„..., P„
with a maximum at the origin and whose symme-
try group G„G, (O(n), is compact (finite being a
special case), and irreducible on the reals, has

an absolute minimum at a maximal isotropy sub-
group of G,.' Although never proved, the max-
imality conjecture has withstood numerous tests
in both phase transitions and gauge field theories
for almost twenty years. '"'"

In the context of continuous phase transitions
the maximality conjecture has several important
consequences. For example, since two or more
possible low symmetries would be necessarily
maximal isotropy subgroups, they could not be in
group-subgroup relationship. Consequently, a
transition from one to another of the low-symme-
try phases, e.g. , in a sequence of transitions
from the high-sym. metry phase, would have to be
a discontinuous, fir st-order transition. Further-
more, since subspaces of the order-parameter
space associated with the maximal isotropy sub-
groups are typically one-dimensional, the direc-
tion picked up by the order parameter in a low-
symmetry phase would typically be temperature
independent.

A counterexample to the maximality conjecture
was found recently. " It was confirmed in that
counterexample that the direction of the order
parameter necessaxi ly varies within. a low- sym-
metry nonmaximal phase. However, continuous
transitions between low-symmetry phases, al-
though not excluded in principle, were not possi-
ble in that example. A different counterexample
to the maximality conjecture will be given in the
present Letter. In this example continuous tran-
sitions between low-symmetry phases will be
possible for the first time.

All possible (quartic) Landau free energies and

their symmetries for a four-component irreduci-
ble order parameter have been recently classi. —

fied. In this classification the order parameter
is written as a quaternion P = (g„g) = (P„g,P, P,).
The elements and the subgroups of SO(4) are
labelled with use of the fact that SO(4) is the
homomorphic image of the product SU(2) SU(2)
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while SU(2) is isomorphic with the group of uni-
modular quaternions. ' " An element of SU(2)
@SU(2) is written as an ordered pair [&,&] of two
unimodular quaternions. It acts on g to give lgr
which corresponds to a SO(4) rotation of g. It can
easily be seen that both [&,rl and [-I,-&] of
SU(2) 8 SU(2) correspond to the same rotation in
SO(4) (we say that they have the same image).

A subgroup of SU(2) SU(2) can be denoted by a
pair [L/N, R/N ], where L, and R are sub-
groups of SU(2) while N~ and N„are'their normal
subgroups such that the quotient groups I /N~
and R/Ns are isomorphic. An element of [L/N»
R/N&] can be written as an ordered pair of uni-
modular quaternions [4~,~n„]= [l,~] [n~, ~„],
where [n~, ns]~ N~ && N„and I and r are coset
representatives in the left coset decompositions
of L and Rwith respect to NI. and N&, respec-
tively, such that the left cosets l N& and r N& cor-
respond in the isomorphism between L/N~ and
R/N&. Every subgroup of SO(4) is an image of a
subgroup [L/N, R/N ] of SU(2) SU(2) . I will
write G =Im[L/N~, R/N&], where here Im stands
for the image under the homorphism SU(2) SSU(2)- SO(4).

I will demonstrate a counterexample to the max-
imality conjecture by considering a breaking of
the high-symmetry group 9, =[D,/C„O/D, ]
driven by a four-component order parameter P
which belongs to a real irreducible representa-
tion I' of 8„8,is represented under ~ by the
matrix group G, =Im[D, /C„O/D, ]- SO(4)," of
order 48. We use bars to indicate the inverse
image (covering) under the homomorphism SU(2)
—80{3)and we use the traditional Schoenf lies no-

tation for subgroups of SO(3)." The associated
Landau fr ee energy is"

&(0) = Z~.l.(4), (I)
af =Q

where 1,(y) = II yll'= Z.=o3$ ' and l, (g) = [I,(t])]'
are the isotropic, 0(4), invariants; I,(4)

', g
' is the so-called cubic, &~, invariant;

whi. le I, (4) = Q[g, g;(t],' —|],') —g, (]';(0 —0&')],
with summation over cyclic permutations of (~j&)
=(]23). A fourth-degree free energy suffices for
s, simple continuous transition. [If multicritical
or discontinuous transitions are allowed by includ-
ing higher-degree terms in I" (g), the maximality
conjecture does not apply. '] The complete sym-
metry group of F(g) is G, which is real and ir-
reducible' fulfilling the conditions of the conjec-
ture. '

To find all extrema of E(p) we follow the method
of Ref. 17. Thus, using the chain criterion' we
first calculate all the isotropy subgroups of Go
and dimensionalities of associated invariant sub-
spaces (subduction frequencies). They are listed
in Table I. The isotropy subgroups G~ and G~
are the maximal isotropy subgroups of G,. They
are isomorphic but they are not equivalent in G,.
Both G, and G2 contain nonmaximal isotropy sub-
groups G3 and G~ which contain the trivial iso-
tropy subgroup G, .

With use of Table I it is straightforward to de-
termine all 81 of the real and complex solutions
to the equation B&E=O and to identify the abso-
lute minima of I'. The resulting phase diagram is
shown in Fig. 1. For ~0& 0 the absolute minimum
is at g =0 corresponding to the high-symmetry,

TABLE I. Inequivalent isotropy subgroups Gs of Go =lm[Q/C&, O/Ej];
their subduction frequencies i(Gs]; an order parameter g(p) whose sym-
metry is G8, number (p) of order parameters equivalent to g(p); and
total number g(p) of associated solutions to g&F'=0.

t"
g

Im[8;/t „O/Q]

~(p) s(p)

Im [Sj/C), 23j/C(]

Im[I], /C&, D&/C&]
'

Im [Cp/Cg, Cp/C(]

Im[C2/C„E/c f]

. 4~ ~i
'W3&3 vs

16

48

C( 48
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disordered phase t",. For u, & 0 several low-
symmetry, ordered phases are possible. A phase
with maximal isotropy subgroup G, (a maximal
phase) is stable for —2u, &u, & 2u, with the nor-
malizability condition u, & —u, (the normalizability
condition ensures that I" - +~ as II g II'- + ~). In
this phase (= ((„0)with (,' = -u, /(2u, + 2u, ).
Another maximal phase, 6„ is stable for -5u3
& 2u2&u3 where the normalizability condition
is u, + u, & —3u, . In this phase P = P, (0; 111)/~3
with g,

' = —3u, /(6u, + 2u, +2u, ). These two phases
are separated by a discontinuous, first-order
transition along &» (u, =2u, ), where the direction
of the order parameter changes abruptly. Within
either of the two maximal phases only the magni-
tude of the order parameter changes while its di-
rection remains fixed.

A new feature of the present model is that a
phase with a nonmaximal isotropy subgroup (a
nonmaximal phase) can also be stabilized. A non-
~aximal phase of symmetry t"„which is a sub-
group of both ~, and t"„ is stable for 2u,
& max(-u~, —5u~). The normalizability condition
is quadratic: 16u, (u, +u, )+4u, '+4u, u, —3u, ' & 0.
In this phase g = (~3/0,' p, g, p, )/~3 and both its
magnitude,

, (2)
16ur (u2 + u~) + (2u2 +3u3) (2u2 —us)

as well as its direction,

(4,A.)'= 2„',5,',
vary within the phase (u's are functions of tern-
perature and other thermodynamic variables).

This example illustrates that contrary to the

I2

FIG. 1. Phase diagram associated with the free ener-
gy Eq. (1). Both maximal and nonmaximal ordered
phases occur.

maximality conjecture a simple continuous phase
transition between a disordered phase and an or-
dered nonmaximal phase is possible. Further-
more, the transitions between ordered phases G,
and G, along v» (u, = —2u, ) as well as between
G, and G, along m» (5u, = —2u, ) are simple con-
tinuous transitions. Thus, we find for the first
time a possibility of describing by a single or-
der parameter successive simple continuous
transitions between three or more phases of dif-
ferent symmetry. Successive phase transitions
are often observed, most notably in mixed per-
ovskitetype oxides of the form (1 —x)ABO,
+xA'B'0, ." In (Ba, „Sr„)TiO„for example, suc-
cessive transitions between cubic, tetragonal,
orthorhombic, and rhombohedral phases are ob-
served. In such cases a singl. e (multicomponent)
order parameter, phenomenological Landau mod-
el. has been developed. " This model is, unlike
the present example, capable of describing only
discontinuous transitions between low- symmetry
phases.

Effects of fluctuations on the phase diagram of
Fig. I can be determined with use of a renormal-
ization-group approach. Transitions between a
disordered phase and ordered phases for all in-
equivalent quartic Landau free energies of a four-
component order parameter were analyzed in
Ref. 19 with use of the renormalization-group ap-
proach. ' As a particular case the free energy
Eq. (1) was considered and no stable fixed point
was found. Therefore, the phase boundary &„
Fig. 1, is replaced as a result of fluctuations by
a first-order transition surface.

Fluctuations also affect the transitions between
ordered phases. To evaluate such an effect on
the transition between maximal G, phase and
nonmaximal t", phase, I expand the free energy
Eq. (1) around its G, minimum to fourth order in
P'(1) =(0; f,P, g~), the component of P perpen-
dicular to g(1) = (g„'0). The quadratic term of
the expansion is a bilinear form in (g, P, g,)
whose eigenvalues are 4, = u, (2u, + u, )/(2u, +2u, )
and A., =A., = uo(4u, —u, )/(4u, +4u,). Only A., be-
comes critical within the domain of G, phase.
Consequently, the expansion needs to be restrict-
ed to the X, eigendirection P, (0; 111)/~3, giving

E(P,) = a+A, P, '+ cP,~, c&0. (4)

This free energy leads to a stable Ising-like fixed
point indicating that the transition surface &»
remains second order sufficiently far from the
intersection with the surfaces &~ and &„. The
associated criticality is Ising-like. Similarly,

2075



VOLUME 51, NUMBER 23 PHYSICAL REVIEW LETTERS 5 DECEMBER 1983

the transition across the surface &» remains
continuous and the associated criticality is Ising-
like. I note, however, that transitions across &»
and ~» might become fir st order suf ficiently near
their intersection, leading to two lines of tricrit-
ical points.

Fluctuations are also expected to alter the in-
tersections of various transition surfaces. In
general, the first-order transition surface &,
will not be smooth across its intersection with
the first-order surface &». However, the cusp
it will develop wiQ have to be consistent with the
180' rule: At a point in a plane where three first-
order lines meet no phase can occupy more than
180'." The 180' rule, equally applicable to points
where two second-order lines meet with a first-
order line, is clearly satisfied at the intersection
of &», &~, and &». Within the Landau theory the
surface &, is smooth across its intersections with
both &» and &». This feature need not be altered
by a renormalization- group calculation.

In conclusion, because of the breakdown of the
maximality conjecture, a minimization of a Lan-
dau free energy, or of a Higgs potential, with
respect to the maximal isotropy subgroups is not
sufficient. Rather, a complete minimization
scheme, such as given in Ref. 17, has to be fol-
lowed. The breakdown of the maximality conjec-
ture may also shed new light on successive tran-
sitions in cases like PbTiO, where the symme-
try is lowered in two successive continuous tran-
sitions. "

I am grateful to professors L. Michel and J. C.
Toledano for communicating results of Ref. 19
prior to publication and for several useful discus-
sions o
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