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Quantum Shot Noise in Tunnel Junctions
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The current and voltage fluctuations in a normal tunnel junction are calculated from
microscopic theory. The power spectrum can deviate from the familiar Johnson-Nyquist
form when the self-capacitance of the junction is small, at low temperatures (C~ 0.1 pF,
g ~10 mK), permitting experimental verification. The deviation reflects the discrete
nature of the charge transfer across the junction and should be present in a wide class of
similar systems.

PACS numbers: 73.40.0k, 05.30.-d, 05.40.+ j, 72.70.+m

Recent advances in junction fabrication tech-
niques and cryogenics have made it possible to
construct devices in which quantum sensitivity
limits are realized. ' Such devices present the
chal. lenge of understanding the fundamental mech-
anisms of dissipation and noise generation, as
well as being of considerable practical. impor-
tance in their own right.

The standard noise analyses are generally re-
stricted in one of two ways: Either the fluctua-
tions are considered in the classical. l.imit or
they are taken to be rel. atively small, i.e. , the
fluctuating variable is treated in the Gaussian
approximation. In the fol. lowing, we cal.cul.ate
the power spectrum of current and vol. tage fluc-
tuations of a tunnel junction. In a regime where
both quantum effects and the discreteness of the
underlying charge transfer process are impor-
tant, the spectrum differs from the familiar
Johnson-Nyquist form. Accordingly, consistent
with the fluctuation-dissipation theorem, the
response to a biasing voltage is not simply Ohmic
in that case. The regime of interest is charac-
terized by the charging energy per electron, e'/
2C, being of the order of kT or l.arger. For ex-
ample, for C =0.1 pF and T =10 mK the ratio is
e~/2CkT —= 1. This parameter range is accessible
which all.ows experimental verification of our
conclusions.

It is well. known that the current through a met-
al-insulator-metal tunnel junction, when driven
by a voltage source, is purely Ohmic: (I) = V/R.
Accordingly, the power spectrum of the current
noise in a tunnel. junction measured in a circuit
closed by an ammeter is given by the familiar
Johnson-Nyquist' result, S,(~) = (1/mR)k&u coth(k~/
AT) ~ It is also known that in the case where the
junction is driven by an external constant voltage
source, ' t he noise spectrum is

S, (~) = g (R~ ~e V) coth=1 k(d+ ep
7l

This result exhibits the typical. feature of cl.as-
sical shot noise, viz. , the linear increase of
Sz (&u) with (large) average current, which re-
flects the discreteness of the charge transfer
process. Both an ideal vol. tage source as wel. l
as an ideal ammeter have zero internal resis-
tance. Hence the self-capacitance of the junc-
tion plays no role in the configuration considered
above.

In contrast, if we measure the voltage fluctua-
tions of an open, undri«& junction, a fluctuating
current causes a charging of the electrodes,
which in turn act as a voltage source. Thus, we
expect resul. ts reminiscent of the vol. tage-driven
case, Eq. (1), even though the system is in ther-
mal equilibrium. Indeed we find

S~(&u) =—Re
1 . K&u coth, (2)=1 1 k(d

where 1/R(cu) is an effective (non-Ohmic) con-
ductivity of the junction, which is evat. uated be-
low. ' Similarly, the response of an open junction
to an applied bias voltage V, (&u) (realized, for
example, by pl.acing the junction in an electric
field) is non-Ohmic:

&v(~)& I,,
The conductivity 1/R(tu) differs from the Ohmic
1/R appearing in Eq. (1) unless /2eCkT is smal. l.
Experimentally, this devia. tion coul. d be verified
by measuring the voltage fluctuation spectrum,
Eq. (2), or by measuring the average voltage
across the junction induced by a radiation fiel.d

V„(&u).' Inasmuch as an ideal current source has
an infinite internal resistance, we expect that
the response to an external current source is
governed by this same 1/R(cv).

The microscopic model of the tunnel junction

2064 1983 The American Physical Society



VOLUME 51, NUM@EH 22 PH YSICAL REVIEW LETTERS 28 NovEMBER 1983

that we assume is the Hamiltonian B=II~+B„+IJ~+B. Here B~&» describes the noninteracting elec-
trons in the left-:hand (right-hand) electrode, and the tunneling across the junction is described by the
standard form:

IIr = J„~d'xf„, ~ d'x'T(x, x')g~, t(x)g~, (x')+H.c.

The Coulomb interaction between the charges on
the two sides of the junction is accounted for by
an effective self-capacitance C such that Pz
= (Q~ —Qz)'/8C. Furthermore, the current
across the junction is given by Q~

-=I= —i[Q~,H]/
S.

tions we consider the generating functional.

Z[$]=tr(T„exp(- f, dT[H I((v-)]/5} ). (5)

The single macroscopically observable degree of
freedom is the charge Q on one of the electrodes,
or equivalently the potential drop across the
junction, V, We perform the trace in Eq. (5) over
all other microscopic electronic degrees of free-
dom and write' Z[(]= fDVe"'v ~'. Here we intro-
duced V(~), replacing the quartic interaction Po
by 2CV (7')+ (i/2)V(v)[Q~ —Qz], and integrated
over the (now) quadratic electron degrees of free-
dom. The action is given by

The tunneling process shifts the energy of alI.

the electrons in one junction side relative to the
other side. As a result, a large number of el.ec-
trons proportional to the density of states and

the size of the junction can tunnel back. By
comparison, the distortion of the electrons'
energy distribution has a negligible effect on the
tunneling current, unless the system is of truly
atomic dimensions. Thus, we do not explicitly
model the inelastic interactions in the metal.
which thermal. ize the system but proceed directly
to

A[V, $] = f, d~CV'/2l —trln G '[V, $],

consider a canonical ensemble at temperature where G[V, )] is the Green's function, a 2&& 2

matrix in the space spanned by the left- and right-
hand electrodes, which have opposite potential
shifts. The diagonal elements of G ' are

G, „'= [-RB/&7 —e,„,(V) —(+ )(ie/2)V(v)]5(x —x')& (v —~')

and the off-diagonal (1,2) element is

T[~j =T(x, ')[1 &( )]5( -").
e assume that the tunneling matrix element T is independent of momenta and expand in T. We also
ignore spatial modulations of the charge density within each electrode, which is justified for frequen-
cies below the plasma frequency. Furthermore, it is natural to perform a gauge transformation to
remove the potential shifts. This introduces a phase variable 6—= eV/8, such that Z[)]=JDee ~' '~'.
The action becomes

ce ~

A[6] = d~, 0'(~) +2
p 28

. , eT -e~~
d7 d~' o.(~ —v'') sin'

and 6[8,$] is obtained by replacing in this form cos(6-0') by exp[i(O-8')](1-i )e)(1+i $e'). The p

periodicity requires that we allow only for paths which return to 6(0) up to integer multiples of 2m, i.e. ,
8(P) =O(0)+ 2m. The kernel o is

o.(T) = 2!T!' dpI dp~
(2mb)' (2m@)'

To proceed we assume further that G~«& are the equilibrium Green s functions of the electrons in the
left (right) electrodes. Thus

1 h (mk T/h')'

2~ e'R sin'(ART~/R) '

where R =5/4me'!T!'N~(0)N~(0) is the constant Ohmic resistance of the junction.
Notice the non-Gaussian form of the effective action 2[6], which is an anharmonic 2m-periodic func-

tion of O. This cyclicity reflects the discrete nature of the charge transfer of electrons across the

junction.
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We can now calculate the average value of the tunneling current, (I(T)) = (1/@[0])JDOe "'e'I [6 ~]
where

8Ir[6i~]=- 2e Jo d'r' &( — ')»n[6(~) -6(&')],
and the current fluctuations,

(I(v) I(v')) = (1/Z[0] )JD6 e "'e' (Ir[6,T ]Ir[6,T']+ 2e'o(~ —T') cos[6(~) —O(T')]).

(10)

The first term in (ll) is just the square of the tunneling current I» while the second term represents
the intrinsic noise current: (I„I„).

We first observe that if we fix the voltage as a constraint {as is appropriate for an ideal voltage
source with zero internal. resistance) then we find a simple Ohmic linear response: (Ir(t)) =V(t)/R.
This result obtains in the normal. junction because a'(t) —n'(t) = (ih/e'R)d5(t)/dt, which makes Ir a
local' function of V(t). Here o.'"'(t) are the real. -time analytic continuations of Eq. (9). Under the
same conditions, the noise current correlations are

—.'([I„(t),I„(t')]„)=e' cos[6(t) —6(t')] [n'(t —t')+ n'(t —t')], (12)

where [,]+ denotes the anticommutator, and e'(o. '+ o. ') = (k&u/R) coth(h&u/2kT) ~ For fixed constant
voltage, the cosine shifts the R&u of the Johnson-Nyquist form by+ eV and we recover the result Eq. (1).

In the undriven junction, i.e. , in an open circuit, or in a circuit closed by a voltmeter, the noise
spectrum follows from (11). We find results in a closed form if we restrict our attention to junctions
with large resistance, viz. , R» (5/e') e'/CkT. ln this limit the second term in the action becomes
negligible and the energy is determined by the charging energy of the capacitor. We then obtain the
noise correlations

=1 2 2 -1
-'([I.,I.],).= Z p —,' „'

q ~ OO

&& Q exp — Q I ~+ —((g+ 2) coth
q ~ OO I

This result is quite reminiscent of the vol. tage-
driven form of Dahm etal. ' in Eq. (1). Replacing
the external voltage V is (q+ &) e/C, which shows
the capacitor acting as an effective voltage source,
with a weighting appropriate to the equilibrium
Boltzmann distribution of charging energies,
8 =g 8/2C ~

For most macroscopic junctions, the para-
meter CkT/e' is very large, the discreteness of
individual charge transfers becomes irrelevant,
and Eq. (13) reduces to the Johnson-Nyquist re-
sult. However, for smaller val.ues we observe
interesting deviations (Fig. 1). Our resul. t is
smaller than the Johnson-Nyquist spectrum. The
fluctuations which occur via a transfer of dis-
crete charges require a finite energy E, and are
thus suppressed. Thus, for low frequencies
(R&u«kT, e'/2C) at low temperatures (CkT/'e' —0)
the result in (13) vanishes exponentially: ,([I„, —

I„],) —(2e'/RC) exp( —e'/2CkT). If CkT/e' is
large it approaches the classical. result as ~([I„,
I„],)~ —(2k T/R)(l —e2/6Ck T ).

Equation (13) is'our principal result. It is re-
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FIG. 1. The noise current correlation function as a
function of temperature at fixed ~. The parameter is
Aw/(e /2C): (a) =20, (b) 4, (c) 2, (d) 1, (e) 0.5, and

(j) 0.2. The dashed line is the Johnson-Nyquist result.
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lated to a response function 1/R(cu) according to

—,([I„,I„],) = [1/R(~)) Kcu coth(k~ /2k T ). (14)

In terms of R(~) the total current fluctuations
across the junction, i.e. , including the contribu-
tion from the first term in (11), are given by'

discussions with V. Ambegaokar, Tin-Lun Ho,
Y. Imry, %. Kohn, R. Landauer, J. Langer,
D. Langreth, A. Schmid, and B. Schrieffer. This
work was supported in part by the National Sci-
ence Foundation through Grant No. PHY 77-27084,
supplemented by funds from the National Aero-
nautics and Space Administration.

=Re „.C
5~ coth

For zero frequency this resul. t vanishes, re-
f l.ecting the conservation of total. charge in the
junction. Identifying V=Q/C, we readily obtain
the voltage noise spectrum (2). Furthermore,
the linear response of I and V to a bias voltage
V, , which is modeled by adding to the Hamiltonian
the term ~=V, (Q~ —Q~)/2, is summarized in

Eq. (3). The same R(&u) as defined above enters
again. The fluctuation-dissipation theorem con-
nects this response to V, and the fluctuations
considered above.

We have considered the specific case of a nor-
mal tunnel junction for def initeness. However,
any system in which the discreteness of the states
and the underlying noise generating process is
essential will show simil. ar deviations. We pre-
sented here results for junctions with large re-
sistance, which we can express in closed form.
We expect that for stronger damped junctions
[R ( (R/e') e'/CkT] the discrete level structure
apparent in the result (13) is smeared out, and

the power spectrum looks more l. ike the Johnson-
Nyquist result. The path integral (11)provides
the prescription of how to evaluate the noise
spectrum in general.

It is a pleasure for us to acknowledge important
discussions with H. Kl.einert. Furthermore, we
profited from many interesting and stimul. ating
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Strictly, we have verified the relations (2), (3), and
(15) with 1/R(~) as defined by (14) only to first order
in 1/RC~. The relations also reproduce the ~ =0 limit
and, of course, are correct for the Gaussian limit
where p(~) =p. We conjecture they are correct in
general. In any case, they provide an adequate inter-
polation.

After the main part of this paper was completed we
learned that Tin-Lun Ho, preceding Letter tPhys. Rev.
Lett. 51, 2060 (1983)J, had derived a similar response
function. He comments further on the experimental
relevance.

The following derivation of an effective action pro-
ceeds parallel to V. Ambegaokar, U. Eckern, and
0, Schon, Phys. Rev. Lett. 48, 1745 (1982).

7In a superconducting junction where ~ depends on
the energy gap, a new time scale is introduced and the
current-voltage relation remains nonlocal in time and
nonlinear.
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