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To What Class of Fractals Does the Alexander-Orbach Conjecture Apply?
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Alexander and Orbach have recently made the remarkable numerical discovery that for
the incipient infinite cluster in percolation the ratio of d& (the fractal dimension of the
aggregate) to d (the fractal dimension of a random walk on the aggregate) is approxi-
mately "superuniversal" independent of d for d) 1. Does this discovery also hold for
aggregates other than percolation? A plausibility argument (rigorous for the Cayley tree)
is presented that it should hold, exactly, for "homogeneous" fractals, but need not for
nonhomogeneous fractals such as the percolation backbone, the Sierpinski gasket, and
the Havlin carpet.

PACS numbers: 64.60.Cn, 05.70.Jk, 66.10.Cb, 82.70.-y

Highly ramified fractal aggregates have recent-
ly attracted considerable interest, in part be-
cause of their potential to describe a wide range
of nonregular structures ranging from colloids
and polymer gels to galactic structures. These
may be quantitatively characterized by the fractal
dimension d& which relates the dependence of the
diameter 4 on the mass Nf lNf (t"t]. To de-
scribe the dynamics of, e.g. , electrical transport,
interest has also focused on the behavior of a
random walk on a fractal aggregate (the de Gennes
ant").' ' The fractal dimension d of the walk

relates the rms displacement g to the number of
steps N [N -$ '~].

At the percolation threshold p, both df and d
depend strongly on d, the spatial dimension. ' '
Therefore considerable interest arose when Alex-
ander and Orbach (AO)' recently made the re-
markable numerical discovery that the ratio d&/
d takes on a value that is roughly independent of

d; for this reason they made the rather bold con-
jecture that dt/d = —,

' (the Cayley-tree value) for
all d. The AO conjecture has been confirmed by
very precise MD calculations for d =2 and 3.'4
It has the startling implication that dynamic crit-
ical exponents are related to static exponents;
e.g. , the electrical conductivity exponent t is giv-
en by t/v = d —2+ 2d&.

' '
Is the AO conjecture exact, or only approxi-

mate~ Equally important, how "general" is the
AO discovery:o what class of fractals does it
apply~ Very recent calculations on Witten-Sander
aggregates" and lattice animals' for d =2 and 3

suggest that dz/d = —,
' for these fractals. On the

other hand, for other fractals d~/d„may depend
strongly on the nature of the fractal as well as on
the space dimension d. Examples include de-
terministic fractals such as the Sierpinski gasket
and the Havlin carpet (Fig. 1 of Ref. 4), as well
as nondeterministic fractals such as the percola-

tion backbone. " Clearly it is important to under-
stand the general features of an aggregate that
determine whether or not the AO conjecture
should hold. We present a compelling plausibil-
ity argument to support the numerical result dt/
d =x' (exactly) for percolation clusters in any
dimension. Further, we conjecture that dt/d
either exactly or quite accurately, for arbitrary
homogeneous fractals of dimension greater than
one. In general, we may expect other, nonuniver-
sal values for inhomogeneous fractals. ' This ar-
gument, which builds on the basic picture of Ram-
mal and Toulouse, ' is rigorous for the Cayley
tree thus providing a simple and exact picture
for that important case.

By homogeneous we mean that there are no bot-
tlenecks that hinder the diffusion of the de Gennes
ant. More precisely, let & be a set that totally
surrounds a fractal of characteristic linear dimen-
sion $. For a homogeneous fractal, the number
of elements of such a surrounding set should al-
ways scale as a normal boundary on a fractal—i.e. , as $ t '. In contrast, nonhomogeneous
fractals such as the Sierpinski gasket and Havlin
carpet (Fig. 1) have boundary sets with excep-
tionally dense boundaries (hence the term non-

homogeneous).
Our argument is that $ —g "~ " —g where $

is the number of sites visited by the ant in N = N

steps. It is most convincingly presented for the
case of percolation on a Cayley tree with & near-
est neighbors (nn). We focus on that portion of
the incipient infinite cluster visited by the ant
(Fig. 2), and we shall create this set while the
ant is walking. Imagine that the ant is put free at
the origin at time t =1; we call the origin an S
site and the z nn G sites ( growth sites into
which the ant could move). At t =1, the ant ran-
domly chooses one of these C sites and assigns
a random number (RN). If RN & P, I.=1/(z —1)],
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FIG. l. Examples of three nonhomogeneous fractals:
(a) percolation backbone, (b) Sierpinski gasket, and

(c) Havlin carpet (Ref. 4). The crosses indicate sets
of "blocking points" that could serve to confine a ran-
dom walker. The Havlin carpet is constituted by re-
placing every elementary square in the figure shown

by the figure itself, suitably scaled {lengths by 5, mass
by 16), so that d&

—ln16/ln5 =-1.72. Note that the set
of "blocking sites" for the Havlin carpet forms a Can-
tor set with d&

——in 2/ln5 =- 0.42, which is less than
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then the site chosen is renamed a & ( blocked" )
site and the ant does not move, while if BN & P,
it is renamed an S site and the ant moves there. "
At t =2, the ant again randomly selects one of
the not blocked nn of the site it is on, and the pro-
cess is continued [Fig. 2(a)].

At each time step, we can calculate the quantity
G, the number of growth sites. Now G can only
change when either 8 or B grows by one; i.e., if
we introduce the variable I- = 8+ B, then

G(I.) = Q ~G(L ), (1)
L'=2

where &G(L') = G(L') —G(L'-1) and G(1) =z. It is
clear that the AG are independent random varia-
bles [Fig. 2(b)], so that for large L, G(L) is nor-
mally distributed with a mean of Lmean(b G) and

FIG. 2. (a) Schematic illustration of a few steps
taken by the de Gennes ant on a Cayley tree with z=4.
The letters S, B, and +denote sites visited by the
ant, blocked sites, and growth sites, respectively.
The subscripts denote successful values of L =—S
+ B [L = 2, 3, ..., 9]. (b) Values of & G( L) corresponding
to the trajectory of (a). Note that + 2 occurs roughly
twice as often as —1, and that & g is an independent
random variable with zero mean.

a variance of L' 'var(bG). If follows that

G(I) =Lmean(AG)+L"'var(&G). (2)

This reasoning cannot be carried over in. its
present form to d-dimensional percolation, since
AG(L) can take a range of different values if the
site is occupied, whileit is always —2' if the site
is blocked. While the decisions whether to
block or occupy are still independent, the &G val-
ues for each site depend on the previous history
of the walk.

The following approach, while certainly not

rigorous, does support the validity of the AO con-
jecture for d-dimensional percolation. First par-

Now mean(AG) =0 for the particular choice P, of
the occupying probability. However since I - 8[1
+ (1 —P,)/P, ], the rate of growth of S is clearly
given by the ratio of G sites to S sites,

~S/~&V -G/S-S '"
rom whi. ch we obtai. n S -N"y'"" wi. th



VOLUME 5 1, NUMBER 2 2 PHYSICAL REVIEW LETTERS 28 NOVEMBER 198)

tition all of space into cells of edge M where
1«M«g . From the time the ant enters a cell
until he leaves the cell, we treat all consecutive
changes in G as if they were a single event. This
coarse graining has no effect on the asymptotic
behavior of G, S, or Ã. Correlations within the
cell have a finite range (since M is finite), and
therefore are of no consequence for the asymptot-
ic behavior of the random walks. Correlations
within the cell have a finite range (since M is
finite), and therefore are of no consequence for
the asymptotic behavior of the random walks.
Correlations between different cells will decrease
as the ratio of surface to volume approaches
zero.

For diffusion on an arbitrary fractal, the argu-
ment is more hypothetical. Let N and S be de-
fined as before, but redefine G sites as those non-
visited sites belonging to the aggregate that are
nn of the already visited sites. We do not create
the fractal as the ant diffuses, so that we can dis-
pose of the need for & sites. Assume that (i) the
fractal is infinite, but diffusion on it is anomalous
in the sense that S/N-0 as N-~ at least as fast
as some power of N; (ii) the fractal is not topolog-
ically one dimensional (i.e. , the perimeter of a
cluster grows with its size); and (iii) the fractal
is homogeneous in the sense described above.

Since S«N for large clusters, it is clear that
the walk will only rarely hit a G site, thereby
increasing S. Such events are well separated in
time by assumption (i), and hence are presumably
uncorrelated. Hence it is plausible that

b.s/b. N - G/S,

where G/S is the probability of hitting a G site;
by (iii) all G sites should be equally probable for
sufficiently long times. Since G only changes
when S does, we have

(6)

The desired result, (4), follows if it can be de-
termined that G -S' '. This would be true if the
&G(S') were without long-range correlations. In

general, this is not the case, since there are ex-
plicit counterexamples. However, under assump-
tions (i)—(iii) it may be a reasonable approxima-
tion to make. It is to be noted, in any case, that
all known counterexamples to the AO conjecture
are strongly inhomogeneous. We cannot tell
whether the homogeneity definition we have given
is indeed the appropriate one, nor why it should
be so crucial in the argument apart from the fol-

lowing: On an inhomogeneous fractal the random
walker will alternatively be 'bogged down" in a
bottleneck or, on the contrary, just have passed
one. This will occur on all scales. This may
lead to strong correlations in the &G's and hence
to a breakdown of the argument. From the above
follows Eq. (2) with L replaced by S. We can a,r-
gue again that mean(AG) =0, by assuming the
contrary: Were mean(&G) & 0, then G - S, imply-
ing that &S/b. N=O(1') contradicting the hypothesis
of anomalous diffusion. Were mean (b. G) & 0,
then the walk would have to terminate, contradict-
ing the hypothesis of an infinite fractal. Hence (2)
implies G- S'" and the argument proceeds exact-
ly as in the case of the Cayley tree.

In summary, then, we have taken seriously the
AO numerical discovery that d&/d —= —,

' for per-
colation fractals. We have presented an argument
that justifies this result for the Cayley tree and
somewhat improves upon the Rammal- Toulouse
argument for general-d percolation clusters. We
define a class of homogeneous fractals, and argue
that similar reasoning should apply. Nonhomogen-
eous fractals are seen to be quite different, and
we predict that the AO conjecture does not gener-
ally hold for these. Our prediction is borne out

by calculations on the percolation backbone, Sier-
pinski gasket, and Havlin carpet.
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"Thus a fraction p of the time steps result in the

ant moving while a fraction 1 —p, result in no move-
ment. In many simulations the ant moves at each time

step; to make contact with this work, we only need
rescale time by a factor of p, .

' The quantity 2d&/d =d is termed the spectral or
"fracton" dimension. No rationale for notation has
emerged in this fieM. For example, d& is denoted d
in Befs. 4-6, D in Befs. 2 and 7; d is denoted D in
Ref. 4, 2+ p in Ref. 5, 1/v in Ref. 6; finally, d, is
denoted d in Befs. 4 and 5 and d in Bef. 6. Hy placing
a subscript on all three quantities d&, d, and d, we
let the reader know immediately which fractal dimen-
sion is being denoted.


