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Vortices with Ferromagnetic Superfluid Core in 3He-B
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It is shown that there may exist five axisymmetric vortices in He-B, different in their
internal symmetries. The Landau theory for phase transitions between them is con-
structed. Numerical calculations show that one of the observed vortices possesses a
novel new structure: a superfluid core, which is ferromagnetic. This explains the
measured large magnetic moment of the vortex.

PACS numbers: 67.50.Fi

Two unexpected physical phenomena were found
in recent NMR measurements with rotating super-
fluid 'He-B: (i) the first-order transition' ' of
the vortex core at T =0.6T, (for P =29.3 bar),
and (ii) the intrinsic magnetic moment, concen-
trated in the core of the vortices. ' Ther efore,
in spite of its small size — of the order of the
superfluid coherence length $o —= 200 A—the core
structure of vortices in 'He-@ proves nontrivial.

&-phase vortex-core structures have been in-
vestigated with the use of numerical' ' calcula-
tions in the Ginzburg-Landau (GL) regime. These
approaches assumed structures for the vortex
with a normal core. However, topological con-
siderations' fir st showed that unlike the 'He vor-
tex or vortices in superconductors, superfluidity
need not be broken in the 'He-8 vortex core,
which may contain other superfluid phases, such
as the & phase.

Here we introduce a new approach, based on a
symmetry classification of the vortices. This is
vital for understanding the vortex-core transi-
tion because, as a rule, phase transitions are
accompanied with a change in the symmetry of
the system (the gas-liquid transition is, however,
one of the few exceptions to this general behavior).
Therefore, we expect that core structures of the
vortices at T & 0.6T, and at T & 0.6T, , which we
denote by Nl and N2, possess different symme-
tries. To investigate the nature of the vortex
transition we analyze all the possible symmetries
of the vortices. We find that in 'He-&, there are
five types of axially symmetric vortices with dif-
ferent internal symmetries. (Similar classifica-
tion can also be employed for axially nonsymme-
tric vortices, such as continuous vortices' in
'He-A. ) To identify the observed vortices we
calculate the core structure in the GL regime

at low pressures, where experiments suggest'
that only the vortex N2 is stable. We find that
vortex N2 has superfluid core: a mixture of the
4 phase and the ferromagnetic superfluid 0 phase.
The P phase is never stable in bulk liquid; it may
only exist in the 'He-& vortex core.

To illustrate the symmetries of vortices, let
us first consider 'He. The order parameter g
for the vortex with m quanta of circulation is P
= C(r)e ~, where r, y, and z denote cylindrical
coordinates, with & along the vortex axis. The
total symmetry group of this state includes both
continuous and discrete subgroups. The con-
tinuous symmetries, besides translations along
the vortex axis, contain rotations around & com-
bined with a gauge transformation. The generator

A A A

of this combined symmetry group is Q =I., —mI,
where L, = —i &/sp and I (with Ip =g) is the gen-
erator of the gauge transformation. The invari-
ance of g under this transformation, Qg =0,
means axial symmetry.

The subgroup of the discrete vortex symme-
tries contains the four elements 1, P, =Pe' ", P,
= TL, „, and P, =P,P, . Here P is the parity
transformation r- —r, e ' is a gauge transfor-
mation by the phase m&, T denotes time inversion
including complex conjugation, and L, , means
rotation by 71 around a perpendicular axis y;
clearly, P,P =P2$ =g.

Note that P = C (r) e' ~ is the only solution of

Qg =0. Consequently, one can expect no phase
transitions for the 'He vortex, unless axial sym-
metry is broken. However, in superfluid 'He the
axially symmetric structures are much richer,
and one may in fact expect several phase transi-
tions due to broken discrete symmetries without
broken axial symmetry.

The order parameter in superfluid 'He is a 3
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&& 3 complex matrix A «, with spin (o.') and or-
bital (i ) indices. In 'He-&, this reduces to the
orthogonal matrix R;: A ~

——CR qe', where@'
is a phase factor and C is the amplitude of the
order parameter. Vortices in 'He-& ai e quan-
tized, such as those in He-II, but with the cir-
culation quantum@/2m, ~ Far from the vortex
axis the order parameter is A„q(~) = CR„,e'
This asymptotic form defines the maximal sym-
metry group of the 'He-& vortex. Now axial sym-
metry is described by the modified generator Q

=L, +S„R„, mI: -QA„& =0. Here S is the op-
erator of spin rotations SSA„& ——i e&„&A &,

. and

L, =-i &/9& +L,"' is the total operator of or-
bital rotations, including internal rotation of the
order parameter: L'; A ~k ]k JAk
=A

&
. One may use simpler coordinates for the

spin system: rotated by the matrix R; with
respect to the laboratory frame. In these co-
ordinates R« =&„&, asymptotics are A«(~)
= C6«e'"~, and the operator Q and the modi-
fied discrete symmetry elements become

Q= I, +S, —mI,

where S... is a spin rotation. through ~ around y.
To find the general representation for the axial-

ly symmetric vortex, one must solve the equa-
tion QA„) ——0; the solution is

A„, =Q„„C„„(r)X"X "e'(

where ~~' and ~ " are eigenfunctions of the op-
erators L, '" and S, with eigenvalues v and p:
&, .' = (~...+iy", , „)/~2, and ~, „0= 2, „. this
solution contains nine complex functions C„„(r),
describing amplitudes of Cooper pairing into
states with projections p and v of pair spin and
pair orbital momenta. For example, C,+ rep-
resents A-phase Cooper pairing.

There are important constraints on the C„,
imposed by the discrete symmetries, under which

they transform as

P,Cq „=(- 1)"""Cq p, P2Cq „=Cq p*,

P,Cq „-—(- 1)"'"Cq „+.
Here we consider only singly quantized (m=1)
vortices. The vortex which possesses the maxi-
mal discrete symmetry, &,C» = P,C» = P3Cp,
= C„„,we denote as the 0 vortex. It has five
real amplitudes, C„, C Cpp C + and C
All of them must enter the expressions because
of their mutual nonlinear coupling in the Gorkov
equations (or GL equations near T, ); hence all
the possible vortex solutions in 'He-& are non-
unitary by necessity. Thus the one-parameter
Ansatz A „,= C(r)b«e' ", imitating a 'He vortex,
is not a solution of the Gorkov equations; neither
is the three-parameter vortex Ansatz of Pass-
vogel, Schopohl, and Tewordt. ' The o vortex,
which was first discussed by Ohmi, Tsuneto, and

Fujita, ' possesses a normal core: All the five
amplitudes vanish on the vortex axis, where
their phases 4„„=(1 —p —v)p have a discontinuity.

The discrete vortex symmetry may be broken
in three inequivalent ways, depending on which
symmetry is retained: P„P„orP,. We denote
the corresponding vortices as ~, v, and ~; see
Table I. The u vortex contains five complex
amplitudes C„„=(- 1)" "C„„,which vanish on

the vortex axis. The v vortex has nine real am-
plitudes C„,= C„,* (C„, C,+, C, , and C, in
addition to those in the 0 vortex), of which C„
and C+, need not vanish at & =0, since their
phases ~'p+ =@+p =0 display no discontinuity on
the axis. These describe the superfluid A phase
(C,+) and the ferromagnetic superfluid P -phase
(C+,), with its magnetic moment directed along
&~ =R„&&&. The vortex also contains nine
amplitudes C&, —(- 1)"+"C&„*,describing the
same pairing states as in the v vortex.

For the construction of a Landau theory of phase
transitions one must introduce three real order
parameters M, v, and , associated with the three
possible broken symmetries. The GL free-energy
functional, invariant under the P„P2, and P,
transformations, is

F = —au2 —bv2 —cu2+z(u + v + m ) + euvm yfu2v2 y gu u' + /zv (2)

Nonzero M, v, or ~ describes the appearance in
Eq. (1) of the five (imaginary), four (real), or
four (imaginary) amplitudes, in addition to those
of the o vortex; see Table I. Depending on the
phenomenological coefficients a, ...,k, which are
functions of temperature and pressure, Eq. (2)
may exhibit different minima, corresponding to

! the o, u, v, m, and the least symmetric, though
axial, uvzv vortex, with all the nine complex am-
plitudes nonzero: (i) u =v = w =0; (ii) u o 0, v = u
=0, (iii)v&0, u=w=0; (iv)u&0, u=v=0, and

(v) u40, v40, m40.
The (P, T) plane may be divided by lines of
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TABLE I. Classification of the axisymmetric He-B
vortices.

(a)

Discrete C» with C„with
Vortex symmetry p+ p even p+ p odd

Core
fluid

P~»2 P3
P)

Pg

Real
Complex

Real
Real

Complex

Real
Imaginary
Complex

Normal
Normal
Super
Super
Super

u (v

FIG. 1. Two of many possible phase diagrams for the
five vortices according to the Landau theory of Eq. (2).
In (a) only second-order transitions (thin lines) occur,
while in (b) there also is a line of first-order transi-
tions (solid curve). On dashed catastrophe lines meta-
stability of one of the phases (in brackets) terminates.

first- and second-order phase transitions in parts,
each corresponding to a given minimum. Figure
1 illustrates several of the possible transition
lines, critical points, and catastrophe lines.
Transition from an 0 vortex to &, v, and vor-
tices (and from &, v, ~ to the eve vortex) is ac-
companied with decreasing symmetry and is
therefore of second order. First-order transi-
tions occur between~, v, and ~ vortices, be-

cause these possess different broken symmetries.
Landau theory also allows a possibility of various
asymmetric Mv~ vortices corresponding to dif-
ferent roots of Eq. (2). Liquid-gas type first-
order transitions between them are also possible.

We can identify the vortex N2, known to be
stable at low pressures for any temperature, '
including the GL regime near 1",. Here we may
use the well-known GL bulk free energy function-
al

f~ = —nA« *A«+ p, A« *A„,+AS,.AB, + p A„, +A„,A& *A&, + p A

+P A „,*As, Ag, *A„,"+ P,A„; *Ay, Ag,.A„, *

and the gradient energy

fx =K, &)A~;&,A„; *+ K, B,A«B)A„, *+K,B,A«B, A„,. *

(where for weak coupling K, = K, =K,=K) for
cal.cul. ating the vortex core structure in terms of
the order parameter A, . Here the coefficients
P, of the fourth-order invariants are chosen in
the weak-coupling approximation [-2P, =P, =P,
=P» = —P» with P ~

= 7X (0)$ (3)/240(m T, )2] and o.
= &N(0)(1 —T/T, ). We have minimized the sum
of the gradient and condensation energies, f,"(f»
+ fz)rdr, for the o, u, v, and w vortices in this
approximation, bel. ieved to hold at low pressure.
Vfe find that the v vortex has minimal energy.
The other vortices, including the most symmet-
ric o vortex in Fig. 2(a), are unstable with re-
spect to the v vortex illustrated in Fig. 2(b).
Hence we suggest identifying the vortex N2 with
the v vortex, which possesses a superftuid core,
containing both the A and P phases.

Note that there is no general, symmetry con-
straint on the vortex magnetization: (S,)

Q &, pl C&, l2. Therefore, the net magnetization
is nonvanishing for al. l. the vortices: The super-
fl.ow motion around the vortex produces internal
orbital rotation of the pairs with (I., '"') & 0,
which in turn produces a magnetization, because
of the rigidity of the Cooper pairs.

Figure 2(c) contrasts distributions of magnetiza-
tion in the v vortex (N2) and the o vortex: The
parameter m, depends on the details of particle-
hole asymmetry near the Fermi surface, and we
know only its order of magnitude,

(where y is the gyromagnetic ratio for 'He). This
makes it difficult to compare calculated values
for the magnetic moment of the vortex with the
values observed experimentally at temperatures
far from T, . The measured magnetization of
the liquid 'He due to the magnetic vortices is of
the order of 10 "nuclear Bohr magnetons per
one atom of the liquid which contains an equilib-
rium density of vortices at an angular velocity
of rotation & =—1 rad/s. Also our estimated vor-
tex magnetization is consistent with this within
an order of magnitude.

The appearance of the ferromagnetic phase in
the core of the v vortex is essential. in producing
the magnetization. The long extent of the P phase
in the v vortex [see Fig. 2(b)] gives rise to the
large range of its magnetization. According to
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experiments, ' a l.arge magnetization is found in
vortex N2 compared with vortex N1. We suggest
(since we have not yet found the transition, we

may only conjecture) that the observed first-
order vortex transition occurs between two vor-
tices with different internal symmetries: The
v vortex with superfluid ferromagnetic core pos-
sessing a large magnetization and the u vortex
with normal. core.

We conclude that the vortex N2, occurring at
low pressures and/or low temperatures over
most of the phase diagram, possesses a super-
fluid core, which is ferromagnetic. ' However,
an unambiguous identification of the vortex N1
can only be done after a complete experimental.
investigation of the vortex phase diagram, in-
cluding the catastrophe lines, which may be
found from the observed metastability phenomena.
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FIG. 2. Structures of (a) the most symmetric 0 vor-
tex, and (b) the P2-symmetric superfluid z vortex in the
weak-coupling limit. The real parameters C» are
scaled such that the bulk 3He-B order parameter
C+ (~) = Cpp(~) = C +() = 1~ Radial distances are in
units of the GL coherence length $&L

—(v'v)$0/(1 —T/
'P~)'~; for y &5(G& the scale is linear in r, f» ~)5$GL
it varies as I/~. The energies Z of the vortices are in
units of 4~p {5/~3), where p is the superfluid den-
sity; & is a logarithmic cutoff. (c) Radial distribution
of vortex magnetization m(z) =mod» p (C» ~, which
is directed along g,.z,
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Nonunitary vortex structures have been discussed
for a hypothetical 3P2 pairing of neutrons, conjectured
to occur in neutron stars, e.g., by B, W. Bichardson,
Phys. Bev. D 5, 1883 (1972), and also by J. A. Sauls,
D. L:.Stein, and J. W. Serene, Phys. Bev. D 25, 967
(1982). These suggested structures are analogous to
the nonunitary 0 vortex of Bef. 5 in that the vortex
core is normal. However, the g vortex introduced in
the present paper is completely different from these
in that it has a superfluid core; moreover, one which
is spontaneously ferromagnetic.
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