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A soli&3-on-soli/ interface representation of the random-fieId Ising mode1 is studied
numerically in two Rimensions. The interface width varies linearly with sample size, in
agreement with simple energy-accounting arguments and recent theories which predict
that two is the lower critical dimension of the random-field Ising mode1.
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The critical and low-temperature (I) properties
of several rather disparate systems, among them
commensurate charge-density waves in the pres-
ence of random pinning centers' and dilute anti-
ferromagnets in uniform magnetic fields, ' can be
well modeled by an Ising ferromagnet in a random
magnetic field. This Letter reports numerical
evidence aimed at distinguishing between compet-
ing theories of the low- T properties of such a
random-field Ising model (RFIM). Our calcula-
tions support recent work by Grinstein and Ma, '
and Villain, who argue that the lower critical
dimension, d„ for this model is 2. Our results
disagree with several recent papers" which con-
cluded that d, =3.

The controversy over d, for this problem began
with the "domain" argument of Imry and Ma, ' who
suggested that long-range ferromagnetic order is,
even at T=O and for arbitrarily weak random
fields, unstable to the formation of large domains
for d &2; i.e., d, =2. Subsequently, however,
discovery of a correspondence between the Ginz-
burg-Landau (Gi ) representation of the RFIM in
d dimensions and the pure Ising model in d —2 di-
rnensions suggested, since the lower critical di-
mension for the pure system is 1, that d, = 3.
Since the correspondence has been carefully
established only for d near 6 this conclusion is,
however, speculative.

More recent theoretical effort has focused on
interface representations of the RFIM, i.e„mod-
els" ' devised for the study of a single domain
wall separating domains of up and down Ising
spins in the presence of random fields. The re-
sults of these studies have only intensified the
debate. Pytte, Imry, and Mukamel' and Kogon
and Wallace' have constructed and analyzed inter-
face models based on the GL representation of the
RFIM and concluded that d, = 3. The starting
point for the interface models of Refs. 3 and 4
was, by contrast, discrete Ising spins. These
authors argued d, = 2. Since all the interface cal-
culations involve more or less plausible assump-

tions and uncontrolled approximations, the issue
has not been definitively resolved. Experiments,
interpretation of which has been complicated by
irreversible effects' at low T, and computer
simulations, "which are subject to severe finite-
size limitations, have likewise failed to produce
an unambiguous decision.

We describe here the first attempt to test di-
rectly the predictions of the various interface
representations of the BFIM in two dimensions
(2D). All of the interface models studied to date
ignore "droplets" and "overhangs. '"4' This
common neglect makes these models comparative-
ly easy to simulate; for a 2D Ising model, e.g. ,
of size L&& L, there are only (L- l)~ possible
distinct positions of the interface separating up
from down spins [i.e., in each column the inter-
face can pass between any of the (L-1) pairs of
adjacent spins]. This is a tiny fraction of the
2 total states of the Ising model, and allows
the numerical consideration of much larger I,'s
(L-10') than does straightforward Monte Carlo.

To define the lattice interface model studied
here, consider an Ising model with nearest-
neighbor interactions on a 2D square lattice.
Let i = 0, . . . , L label the columns and let the in-
teger-valued function f(i) define the position of
an interface separating down spins from up. We
impose boundary conditions f(0) =f(L) =0. The
energy, B„associated with the broken bonds at
the interface is J[L+Q;-, ~f(i+1) -f(i) ~]. An in-
dependent random field h(i, j) sits on every site
(i, j). Iet

i =f (i)

for f(i) &0, &0, =0, respectively. H, = —2
&& g~,'E[f(i)] gives the random-field energy meas-
ured with respect to the energy of the flat inter-
face, f(i) =0. The total Hamiltonian, H, is simply
H, + B,. At each site, an independent random num-
ber, generated without bias between —2k and 2h,
is assigned to h(i, j). The average field strength
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is then h.
The transfer-matrix method employed here

starts from the definitions

V[f(f+1),P f)]

(2)

F[f(n)]= Q V[f(n), f(n- 1)]Y[f(n —1)], (3)
f (n -1)

X [f(m)] =— g V [f(m+ I),f(m) ]X[f(m+ 1)]; (4)

X[f(L)]=F[QO)]= 6&,. F[f(n)] and X[f(m)] can
be evaluated recursively by starting at columns
1 and (L- 1), respectively. The quantity Z[f(n)]
= F[f(n)]X[f(n)] is proportional to the probability
that the interface passes through the position f(n).
The partition function is given by Z—=Qz&„&Z[f(n)],
and the surface tension by o = —TlnZ/L. The
thermally averaged mean square width at I./2,
w'-=([f(4/2)]'), is simply

f (L/2)
[f(L/2)] Z [f(L/2)]/Z.

The ratio of w' to w, the average mean square
width of chill the columns, ought to approach a con-
stant at large L. Numerically, we found w/S to
be independent of L even for small L; we there-
fore present data only for u here. In carrying
out the computations we chose the width, L', of
the system (i.e., the maximum absolute value
that f is allowed to take) to satisfy L' & 10w; we

have found the results so obtained to be indepen-
dent of L'.

Before displaying the results, let us estimate
w for our model with crude energy-accounting
arguments. '" For an interface of length L and
height w, II, -J(L+ 2w) while the field energy II,
--h(wL)' ', for a total energy ED-J(4+2w)'
—h(wL)' '. Minimizing ED with respect to w

yields the equilibrium value of w at T =0: w„
-(h/4J)'L. [Note that this result provides a rough
lower bound on the sample lengths I. required to
achieve the "asymptotically large L" limit. The
statistical considerations implicit in writing H,
as —h(u L)'~' are obviously valid only for w„& 1,
or L & (4J/h)'w„. ] Since thermal fluctuations in
2D produce a width" w~- TL' ', u„» u ~ for
large L, and so the effects of small finite T ought
not to alter the T= 0 results. As w -L has been
argued ' '" to be the hall. mark of the lower
critical dimension, this energy accounting pre-
dicts d, =2 for the BFIM.

I et us compare the result w-h'L with the 2D
predictions of the continuum interface theories.
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References 3 and 4 argue w -0'~'L. The linear
L dependence of this result is identical to that of
the energy-accounting prediction for the lattice
model, as must be the case given that Refs. 3 and
4 also predict d, =2. The origin of the discrep-
ancy between the h' and h' 'dependences is trivial;
it derives from the difference between the ex-
pression, Jj(1+[Vf(x)]'/2)dx, used to approx-
imate the exchange energy across the interface
in the model of Befs. 3 and 4, and the obvious
continuum generalization of II„viz., Jj[1
+ JVf(x) f]dx. [With JVf) -w/L, the difference be-
tween (Vf)' and ~Vf~ is readily identified, via the
energy-accounting argument, as the source of the
discrepancy. "] In the models of Ref. 6 (which
assert d, = 3), w -hL'~'g(h'L), but the behavior
of the scaling function g(z) at large z is unknown.

Hypothesizing g(z) ™z'as z- ~ for some exponent

a, one obtains w-O'"'L'" ', a prediction which
can be tested by numerical study of both the h
and L dependence of w. (Note that since the mod-
els of Bef. 6 have w-Lwhen d=3, and since for
a given L the interface ought to be moider in 2D
than 3D, the exponent a must be & —T.)

Figure 1 shows a log-log plot of w vs L for h
=0.125 and a series of six temperatures between
1 and 0.05. Both h and T are measured in units
of J. Two systematic trends are evident in this
data. First, the data for the two highest temper-
atures show crossover from one slope at small
L to a higher slope at larger L. The crossover
is more gradual at T=l than at T=0.5 and is
easily understood as the crossover from widths
which are essentially thermal in character [i.e.,
(Ref. 12), w -TL'~'; we show as dashed lines in
Fig. 1 the curves corresponding to h = 0 for T = 1
and 0.5] to widths dominated by the random fields
(i.e., w-L", where all theories predict x & 1) at
large L. Fitting only the data for w ~ 3 for T=0.5

by the form w - L" we find that the best fit gives
x=1.0. (Numerical values of x quoted have errors
of about 0.1.) Second, data at the lowest temper
atures, for which the thermal widths are indis-
cernibly small, show the reverse trend —a slow
crossover from a rather steep slope at small L
to a lower one at higher L. We interpret this
curious effect, which becomes more pronounced
as T decreases, as follows: At low T, the ther-
mal component of the width is negligible and,
given the re1atively weak random field h= 0.125,
values of L, -10 are required to produce a non-
zero w. As L increases beyond this "threshold, *'

se shoots up rather more quickly than the linear
dependence on L predicted for la&ye L by the en-
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FIG. 1. Width gg vs length g of the interface for h

=0.125 and various values of T: Solid circles for T
=0.05 diamonds for T =0.1 plusses for T =0.2; tri-
angles for T =0.3; open circles for T =0.5; and squares
for T =1. The solid lines are best straight-line fits to
the data for sv & 1. The dashed lines correspond to h =0.
Both/ and T are in units of J. All points shown cor-
respond to averages over 100 realizations of (hj.

ergy-accounting argument, and then slowly levels
off" at larger L's. For each of the four lowest
temperatures, the data for so & 1 appear to fall on
a straight line. The best fit to these data give
values of x ranging from 1.1 at T = 0.3 to 1.2 at
T=0.05. This systematic increase of x with de-
creasing T indicates that, the apparent linearity
of the curves for u & 1 notwithstanding, at least
some of the data for se&1 are still in the regime
of crossover from the steep initial rise. As evi-
dence for this hypothesis we also fitted only the
data for u ~ 5 at each of the four lowest tempera-
tures, obtaining x's ranging between 1,0 at T= 0.3
and 1.1 at 7=0.05; these numbers are indeed
significantly lower than those obtained from the
so & 1 range of data. Acquiring data for sample
sizes larger than our maximum L of 10' is com-
putationally demanding. We have, however, test-
ed our interpretation of the data on a somewhat
simpler model, one whose Hamiltonian H is iden-
tical to the one we have been considering, but in
which the interface is constrained to be rigidly
horizontal: f(i) =f(1) for all 1 &i &(L-1). The
exchange energy D, for a given interface width so

I=f(i) j is then rigorously given by J(L+ 2u),
whereupon u -O'L must hold exactly at large L.

FIG. 2. Width vs I. for the straight-interface model
for 5 =0.125; squares are for T =0.1, and circles are
for T =1. All points shown correspond to 10 realiza-
tions of (hf.

Figure 2 shows a log-log plot of so vs L data for
4=0.125 at T=1 and 0.1 for this model, whose
simplicity allows treatment of extremely large
(L™10')systems. The upper (T=1) curve shows
the same crossover observed in Fig. 1 from a
thermally dominated regime at small L (in this
simplified model the thermal width is proportion-
al to T and independent of L) to the random-field
behavior, w -I., at large L. The lower curve (T
=0.1, where the thermal width is negligible)
shows the threshold effect, i.e., the rather steep
initial rise, that we saw in the more realistic
model; the slope then decreases. The best fit to
the data for L between 10' and 10' is z =1.0. How-
ever, the best fit to the data for L between 10'
and 10' gives x=1.27, a considerably higher val-
ue. On this basis, we feel confident in asserting
that the apparent increase of x (from its T = 1
value of unity) with decreasing T in Fig. 1 is an
artifact of the threshold effect.

Representative data to test the dependence of se

on h are displayed in Fig. 3, a log-log plot of se

vs h for T=0.1 and L=200. The data points fall
on a straight line with slope y=2.0 +0.1, consis-
stent with the energy-accounting arguments which
predict zo-h'L. This value of y is difficult to
reconcile with the theories of Ref. 6 which pre-
dict d, = 3. Suppose that we attribute an exponent
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FIG. 3. S'vs h for L=200 and T=0.1. All points
shown correspond to 100 realizations of (h).
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x = 1.2, the biggest exponent that our data can
possibly allow, to the w vs L curves. . This choice
corresponds to a= —0.3 in the formula se-h'+"
xL'" ', whereupon so-k", a dependence which
our u vs h data will simply not admit.

In summary, our numerical calculations for a
2D lattice interface model with random magnetic
fields support simple energy-accounting argu-
ments which predict w-L in 2D and hence that
d, =2 in the RFIM. It would be interesting to test
these predictions further by extending the com-
putations described here to 3D.

We are grateful for many helpful discussions
with E. Pytte and P. M. Horn.
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