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Lattice Fermions and Tomography
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The tomographic transform is combined with Susskind-like methods for lattice fermions
to yield a new formulation with no multiplicity of species and with the usual discrete chi-
ral symmetry.

PACS numbers: 11.15.Ha, 11.30.Rd

It is well known that the naive way of putting
fermions on the lattice produces a multiplicity of
species —sixteen, to be precise, in four dirnen-
sions. ' Wilson's way' of handling the problem
was to add extra terms to the action so as to
give the fifteen unwanted fermions masses of the
order of the inverse lattice spacing: In this way
they become infinite in the continuum limit. This
method is in some sense uneconomical —there
are several redundant degrees of freedom. More-
over, there is no chiral symmetry. The Susskind
method" and its reduced version" use fewer
variables per lattice site and keep a discrete
chiral symmetry, but some multiplicity still re-
mains. In the unreduced case, there are four
fermions ("flavors" ) and there is a continuous
U(1) symmetry corresponding to a special chiral-
flavor rotation. A Weyl reduction with respect
to this produces reduced Susskind fermions —the
multiplicity now is two.

I show how a complete reduction can be made
and a lattice action describing a ingle fermion
written down. The technique used for this. pur-
pose is Sommerfield's tomographic transform. '
This is a way of representing four-dimensional
fields (on the continuum) as two-dimensional
fields carrying an index which runs over a con-
tinuous infinity of values. Instead of applying the
reduced Susskind discretization on the usual four-
dimensional continuum action, we first carry out
this nonlocal transformation and put the two-di-

Z =- (i/2)nxn (4)

We make a slight modification of the tomographic
transform and introduce

0'(y, n) =t'(y, n), 0'(y, ~~) =0'(~y, 6'n),

mensional fermions on the lattice. The point is
that in t0 dimensions, reduced Susskind fermi-
ons come with a multiplicity of one.

Sommerfield' defines the tomographic trans-
form of the fermion field by

g "(y,n)

=(2m) 'fd'r5'(y, -n ~ r)u" (n)g(yo, r). (1)
Herey =(y„y,), its two components being al-
lowed to take arbitrary real values. y, denotes
the time, here understood to be Euclidean; y, is
the spatial coordinate of the two-dimensional
fermion. n is a unit vector in three-dimensional
space, in which r is the radius vector for the
four-dimensional fermion. Clearly, Lorentz in-
variance is not manifest. The index & can take
the two values 1,2. u "(n) is a normalized four-
component c-number spinor satisfying the eigen-
value conditions

n nu "(n) =u "(n), 2 nu "(n) = —(-)"u (n), (2)

where the vector a consists of the three Hermiti-
an matrices

CM t =S g) Po~

and
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where 6' changes the sign of y, and ~. One can
then show that the equations of motion of the
(massless) Dirac field P can be rewritten in
terms of these fields as

(s +io a, )g(y, n) =0.

The Euclidean action may be taken to be

S = fd'n fd'yg(y, n)(- o,~, + o,~,)p(y, n), (7)

which exhibits the two-dimensional Dirac struc-
ture clearly. The mass terms spoil the simplici-
ty of (7) and will not be considered here; see
Ref. 5 for details. The important point about the
tomographic transform is that only y, and y, de-
rivatives enter the action, so that n can be
treated as an internal symmetry index, and one
has essentially a two-dimensional space-time.
Note also that the transformation is linear, so
that the Jacobian introduced into the functional
integral is a constant.

The naive way of transcribing the action (7) on
a rectangular lattice would involve replacing the

derivatives ~„by central differences ~„, defined
by

V„f(y) =~(f(y +e"„)—f(y —e"„)j,

where e„denotes a shift of the p coordinate by
one unit, the lattice spacing being taken to be
unity. The action obtained in this way would
really describe four fermions (in two dimensions),
as is well known. We avoid this multiplicity
altogether by use of reduced Susskind fermions. '~
In the conventional formulation of these fermions,
one has a single one-component variable associ-
ated with every site. But like ordinary Susskind
fermions, they too can be described in terms of
a block lattice' of spacing double the usual one,
and then one has (in two dimensions) a spinor and
an antispinor at each lattice site. The action dif-
fers from the naive one by certain "irrelevant"
pieces which vanish in the naive continuum limit
but are effective on the lattice in avoiding multi-
plication of species. The appropriate expression
in the present case reads

Si„,;„=fd'ng, g(y, n)(-o,v, + o,v, -&, -io,h, )g(y, n),

where the operators &„ are defined by

&pf(y) =ref(y +ep)+f(y -e, ) —2f(y)1.

The momentum-space poles of the propagator given by (9) correspond to

sin (ko/2) + sin (k, /2) =0,

(9)

(10)

which is known to be free from doubling.
For the introduction of gauge interactions, one has to go to the alternative description. It is of

course possible to replace the derivatives" in (9) by gauge-covariant derivatives, but this manner of
introducing an interaction violates the discrete chiral symmetry of the action and may lead to mass
counterterms. The other description uses the lattice which has sites at both integral and half-integral
values of y, andy, . One introduces the new one-component variable y through the relations

-( )
iX(y +~ie„n)+ X(y + ~e„n)
X(y+ re„n)+iX(y+ pe„n)

P(y, n) =(-iX(y, n) —X(y +~e~+ &e„R) X(y, n)+iX(y + &eo+&e„n)).
(12)

Then (9) can be rewritten as

Si.« "=2fd'nZ, K&n&(y)X(y, n)X(y + ~e„,n),

where the sum over y now runs over integral and half-integral values, and

a.(y) =1, n, (y) =(-)'".
Gauge invariance needs X(y + &e„,n) in (13) to be parallel transported toy. From (12), one sees

that for cflpiex fermions, sites with one-half-integral coordinate are to be treated differently from
sites with an even number of such coordinates. Introducing the function

~(y) =(-)"'"'"
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we can write down the gauge-invariant action' as

Si«~,„"=2 d'~ZZn&(y)X'(y, ~)
2 U(y, &,~)+

2
U*(y, &,~) X(y+ ~e„~).1+ &(y) - 1-&(y)

Here the U's belong to some gauge group of matrices and act on the g's. I.ocal transformations

(16)

X(y,~)-
2

S*(y,~)+
2 S(y,~) X(y,~), U(y, v, ~)- S(y, &)U(y, & &)S '(3 + pep, @ (17)

1+~(y) 1 —e(y)

leave this action invariant. This is true for both Abelian and non-Abelian groups, but it is only in the
Abelian case that the (y, n)-dependent transformations are equivalent to local gauge transformations in
the (y„r) space in the continuum limit. The usual non-Abelian gauge transformations, local in the
(y» r) space, correspond to nonlocal transformations in tomographic coordinates and will not be con-
sidered here. We restrict the present discussion of the gauge-field part of the action also to the
Abelian case.

The tomographic transform of the vector field (A„A) consists of the following components'.

A (y, n) =(2~) 'fd'r &'(y, -n ~ i)A, (y„i), A, (y, n) =(2m) 'fd'r 5'(y, -n ~ i)n A(y„r),
A~ (y, n) =(2m) 'fd'r 6'(y, —n ~ r)f„(n) A(y„i). (IS)

Here n runs over 1,2 and for each n there are two unit vectors & (n) forming a right-handed triad with
n and satisfying e„( )~=--(-)"~„(~). The massless vector field action can be expressed as

Sg'"g'=- ~fd'n fd'yte„A ~(y, ~)e„A„(y,n) + LO, A, (y, n) —&,A, (y, i)j'].
A gauge transformation

A, (y „i)-A, (y „r) + &,9 (y„i), A(y „r)—A(y „r)+&9 (y „r)
leaves A „unaffected, while

A~ (y, n) -A„(y,n) +9„9(y,rs),

where

(20)

(21)

aeI U, (n) —1).
pl aqu e tte s

9(y, n) =(2&) 'fd'r 6'(y, -n r)9(y„i). (22)

The part of the action involving A can be discretized in the same way as the action for a scalar
field. The other piece is the gauge-field action for a two-dimensional theory and can be treated in the
usual way. Instead of theA„, one uses the phase factors U(y, w, n) associated with the links of the two-
dimensional lattice and writes down the interaction in, for example, the Wilson form by taking products
of the U's around plaquettes:

S)„,,„~'" '=-
~6 fd'n+, 5„'A„(y,n)5„'A (y, n) + {1/4e')fd'n

Here the derivatives ~„' are defined by

5„'f(y) =+ gf(y + ye„) -f(y)j (24)

X(y, )-(-)'"X.(y re, + re„),
U(y, p. ,n)- U(y +ze, +ze„p, ~i)

(25)

(A „unchanged). This discrete transformation
reduces to a &/2 chiral rotation in the continuum
limit, so that mass counterterms are ruled out.

To summarize, we have combined the tomo-

and some unexpected powers of 2 appear because
the lattice spacing is ~.

The action consisting of the pieces {16)and (23)
is invariant under

~ graphic transform and the reduced Susskind meth-
od to formulate a lattice action involving no multi-
plication of species and possessing a discrete
chiral symmetry. Its advantage over the Wilson
action lies in its chiral symmetry and the econom-
ical use of fermion variables. Unlike the usual
Susskind action, it describes a single fermion.
There is some nonlocality entering through the
tomographic transformation, but it is an inno-
cent one, unlike that in the method of Drell,
Weinstein, and Yankielowicz, ' because here it
occurs already in the continuum and not in the
passage to the lattice. The action proposed by
Jacobs' shares all these advantages and has, in
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addition, a continuous chiral symmetry as against
the merely discrete one that we have. But there
is a price to be paid, namely the introduction of
a quenched, random field that decouples in the
continuum limit. The only disadvantages of the
present formulation seem to be those inherent in
the tomographic transform: lack of manifest
Lorentz covariance (in the naive continuum limit)
and the complicated, nonlocal look of non-Abelian
interactions, which have in fact been omitted for
simplicity. We cannot rule out the possibility
that these features mess up the q'bantam contin-
uum limit, but hope that the usual ideas of uni-
versality hold.
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