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Nonuniversality, Exponent Asymmetry, and Surface Magnetization
in anInhomogeneous Square Ising Lattice
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A semi-infinite nearest-neighbor square Ising system whose couplings at a distance l
from the boundary differ from homogeneity by an amount dt's —-A/l is investigated. On
the basis of the Pfaffian method we obtain the critical behavior at the surface of this
cyst~~. The exponents pit, sit, pf y

pffft

and p«display rich nonuniversal behavior as a
function of the amplitude p. For A below a critical value, there is exponent asymmetry
and a spontaneous surface magnetization when the bulk (l = ~) is critical.
PACS numbers: 75.40.Dy, 05.70.Jk, 75.10.Hk

Instances of fully understood surface critical behavior are rare. They acquire a particular signifi-
cance in connection with current research in surface physics, ' especially where it is concerned with
such diverse phenomena as wetting, roughening, surface ordering, and polymer adsorption. In this
Letter we present a system for which a complete understanding can be gained.

We consider an inhomogeneous ferromagnetic Ising system on a semi-infinite square lattice with
Hamiltonian

&. a &, a i + ~a( ) &, a & i a l

The magnetic field A,, acts only on the surface
spins. The interactions J,(l) form a layered
structure: They depend on the distance l to the
boundary. Such inhomogeneous systems have
been studied before, ' in particular when J,(l) is a
random variable. Quantities of interest are the
correlation function g~~(r) between two spins a
distance r apart on the surface, the surface sus-
ceptibility y», and the surface magnetization m, .
Instead of random couplings we consider here
smoothly varying ones such that

J,(l)-Z, (~) =-Al ~, (2)

where p ) 0 and the amplitude A of the inhomo-
geneity is a constant. We concentrate on temper-
atures T near the critical point T, of a homogen-
eous bulk system and put t = (T —T, )/T, .

The equivalent problem on a triangular lattice
was recently investigated, for the special case
A -0 and t=h, =0, by means of the star-triangle
transformation' and by renormalization-group
arguments. " These limited studies reveal that
the case p= 1 in Eq. (2) is of special interest:
The correlation function exponent q ~~

increases
linearly' with the amplitude A. This raises in-
triguing questions, such as what happens when A
becomes negative.

We have recently found a complete solution for
the surface critical behavior of the model de-
scribed by Eqs. (1) and (2) with p= 1. While the
method of Ref. 3 can be extended to the general
case, ' our approach here is entirely different. It

is an extension of the Pfaffian technique" to in-
homogeneous systems, valid in the limit of
smoothly varying couplings. We shall indicate
the main steps of the method after discussing our
results.

We present here full results, including the crit-
ical behavior associated with t-0, h, -0, for p
=1, and for general values of the amplitude A.
The system behaves rather spectacularly at crit-
icality. We summarize the critical behavior in
Table I. Our notation conforms largely to Ref. 1.

(1) At criticality In the A-t-h, s.—pace the sys-
tem has the critical line h, =t=0. A useful change
of parameter is to put A = 4A/jk~ T sinhI 2J,(~)/
ksT]). On the critical line, and for A) —1, g~~(r)
decays to zero as 1/r" ~~ '"', with tl ~f

linearly de-
pendent on A. This agrees with the expression
found' for the triangular lattice when A ~ 0. For
A ( —1, there is a spontaneous surface rnagnetisa
tion m, at criticality, so that tl ~, (A) =0; m, van-
ishes with a square-root singularity as A -—1
from below. For A (-1, g~~(r) still decays as a
power lazu 1/r" ~~

'"' towards g~~(~) = m, 2. For
—2 (A (0, the boundary susceptibility y» is in-
finite. The response m, (t=0, t't, ) of the boundary
spins to a small field h, has a singular part pro-
portional to h, ' », where 6» depends continuous-
ly on A for A (1; when A- —1 from below, Bye

diverges For A=1, .m, (0, h, ) has an essential
singularity at h, = 0, and for» 1, the response
is analytic.
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TABLE I. Critical behavior of the inhomogeneous, two-dimensional Ising model described
in the text. These results apply in the limits t 0, Qf 0, and z ~. They describe the
singular part of the critical behavior only: In some cases, this is so weak that the regular
part dominates. The exponent off is only given for p & 1; for p & 1, ~ f(0, &f) is analytic at
pg f = 0 For g ( 1 pf:0 describes that the spontaneous surface magnetization nz f (t, 0)
does not vanish when I;f 0, and pf( ) describes how this limit is approached: rpg f(t, 0) -~ f(0, 0)

( —t) S& . For the amplitudes we put g~ =(—,'y/q)(~.
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as At-1

as A ~ -2

X]1(0,0) - A as AI0

(2) Approach of criticality. —For t) 0 (t (O) we
write the correlation length as $,~(t) = $,t "~~ [$„(t)
= $ (- t) "~~ ]. In homogeneous systems one usually
finds' that g ~~

is equal to the bulk correlation
length g, . However, in this system, the equality
no longer holds: $~~ may differ from $„either in
its amplitude or even in its exponent. The sur-

face susceptibility g» behaves as t &» when t-0
from above, and y» depends on &. There is an
exponent asymmetry: v~~ and y» differ from v„'
and y»' if A & —1. For t & 0 there is a spontane-
ous surface magnetization m„decreasing as ~t~~

towards its value at I;=0, which is nonzero if g
& —1. For g & —1, the spontaneous surface mag-
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x, , =a+5'x, /[ax, +z,'(l)] (4)

with the boundary condition that x „be the stable
fixed point of Eq. (4). Furthermore,

a(8) =- 2z, sin8 i1+z,e'
i

',

b(8) = (1 —z, ') i1+ z,e 'e
i

',

z, =tanh[J, '/kBT] and z,(l) =tanh[J, (l)/kBT]. We
set z, =—z,(~). When T = T„z,= (1 —z, ); a pair
(z„z,) satisfying this relation is denoted by (z„,
z„). The recursion is trivial for the homogene-
ous lattice, 4 =0. The case A. ~0 is more in-
volved. We therefore use the fact that the large-

netization jumps discontinuously to zero as soon
as t & 0. It is evident from the results shown in
Table 1 that the scaling relations' vi, (1 —g ii) = y»
and vii'(1 —g „')= y»' are satisfied. We remark
that g ii and v„apply to g, i(r), and that g ii' and
vll'apply «g(~)-g( ).

These results apply to a large class of systems.
Firstly, on physical grounds, it is plausible that
changing the couplings in a finite number of sur-
face layers wi11. not change the exponents associ-
ated with large-~ behavior of gii(r). Secondly,
putting J,(l) —J„(l)--7T/(l +l, —1) in Eq. (2), with

l, & 0 and finite, amounts to introducing a specif-
ic combination of higher powers of 1/l into the
asymptotic behavior of J,(l). This is equivalent
to studying a system described by Eq. (2), but

having its surface at l= E„ instead of at l =1.
From the analysis below it can be seen that this
choice does not affect the exponents obtained.
Further, a simple argument" shows not only that
the amplitude g is marginal under renormaliza-
tion, but also that contributions of the form E

~

with P & 1 are irrelevant. Apparently, there ex-
ist universality classes of inhomogeneous sys-
tems, each characterized by the value of the am-
plitude 4, with exponents as given above. The
critical surface exponents are determined by the

long tail of the inhomogeneous part of the coup-

lings, deep in the bulk. This justifies the mathe-
matical analysis below, which is based on a
smooth variation of the couplings J,(l). We shall

now show how the above results can be obtained.
For h, =0 in Eq. (1) we make use of a result due

to McCoy and Wu, ' which expresses gii(r) in the

form
1 7r

g„(~)= . f d8e '"e/x, (8).

The quantity x, (8) depends on all parameters of
the problem. It is determined by the recursion
relation

r behavior of gii(r) follows from the small-8 be-
havior of x, (8). Further simplification is ob-
tained by taking T close to T, i.e., jti «1. Fi-
nally, we assume that i&/li «1. We expand Eq.
(4) in these three smail quantities. To lowest
order,

y, , =0+ (1+pt)y, /(gy, +1-&t a/l), (6)

d'M (z)l«' = [y- ~/z —(y- ti ')/z']a (z) (6)

with ~ = —&Ayt/$ and p =~(1 -A). The solution
in agreement with the boundary condition is, up
to an irrelevant factor, u(z) =W„~&(z) where
8', „(z) is the Whittaker function. ' Upon putting
E =1 and making a few substitutions we obtain
x, (8), which, with Eq. (3), gives

d8 I9e ice

" r-P ~[&M'+ P 'M"] + r'[~-+ P -M' -)

where 1"+=r(+ 2@ )/1" (~ + p, —g), ~ = ($ —yt)Q + (1,
—2p)/$i, P' =1+ 2g + (2p -1)yt/$, M' =M(z+p
-lc, 1+ 2', $), andM" =M(- ~+ p -K, 1+ 2'. , $);
and ~ denotes the Kummer function. '

Further analysis for t =0 comprises expansion
of the fraction in Eq. (9) in powers of 8, and eval-
uation of the leading terms and singular correc-
tions for small ~. For special values of &, two
terms may merge into a logarithm. The Fourier
transformation Eq. (9) then gives gii(~) for large
r. For t 4 0, gii(&) is found from the singularities
of the integrand of Eq. (9) in the complex 8 plane.
These singularities lie on the imaginary axis:
branch cuts due to the square root in the defini-
tion of $, and poles for zeros of the denominator
of the integrand in Eq. (9), associated with non-

where y&
-—x,-/z„, p =-q8, q =2z„/(z„(1+z„)']

p =4J,/k&T„and L =(2 —2za, k BT,). From Eq. (6)
we see thaty&, -y, is of the order of the quanti-
ties that were assumed small. We therefore con-
sider 1 as a continuous variable and replace Eq.
(6) by the differential equation

dy (l)/« =4[y'(l) —1]—(4/l + yt)y (l) (7)

with y =P +L. Higher powers of small quantities
have been neglected. The proper boundary condi-
tion is easily found to be y (~) = (yt + $)/2P, where
$ =(y t'+ 4q'8')"'. To solve Eq. (7), we introduce

a(&l) = exp[- f, fly (l') -&/(2l') yt/23d—l'].
Then it reduces to a linear second-order differ-
ential equation, namely

2017



VOLUME 51, NUMBER 21 PHYSICAL REVIEW LETTERS 21 NOVEMBER 1983

positive integral arguments of I' functions.
In order to derive the singular part of the

boundary magnetization m, (& =O, h, ) for small k,
and of the susceptibility y»(t, k, =0) for small I tl,
we make use of an expression for~, given by
Mccoy and Wu'. In our case, it reduces to

h~ " d0
(10)2~, It,'+ cx, 6

with c = —2 sine~ 1+e'
~

'. The zero-field bounda-
ry susceptibility follows by differentiation:

y„=l —— d81cx, (0)j '1

where

x, '(e) =x,-'(~) -O 'iim O/x, (O).
e 0

Upon using the solution x, (0) in Egs. (10) and (ll),
and analyzing the small-8 behavior of the inte-
grands in Eqs. (9)-(11), one derives the critical
properties shown in Table I.

More details, especially about the mathematical
part of this work, will be published elsewhere.
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