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Josephson-Junction Arrays in Transverse Magnetic Fields

S. Teitel~') and C. Jayaprakash
DePartrnent of Physics, The Ohio $tate University, Columbus, Ohio 43210

(Received 24 June 1983)

A class of uniformly frustrated zy models which describe the behavior of a Josephson-
junction array in a transverse magnetic field is considered. The frustration j' is the
fraction of flux quantum of applied field per unit cell of the lattice. The ground-state
energy Eo and critical current are computed for several rational f'. The behavior for
arbitrary f' is discussed, and it is concluded that the resistive transition temperature
for f =-p/q is bounded byk~T (plq) ( wrEO{f) (/2q. The resistance as a function of tem-
perature and field is determined by the sequence of T 's thus produced.

PACS numbers: 74.50.+r, 64.60.Fr

In this Letter we provide a theoretical descrip-
tion of the experiments' ' on regular arrays of
Josephson junctions which exhibit a rich structure
as a function of the applied transverse magnetic
field R The Kosterlitz-Thouless (KT) theory of
phase transitions in two-dimensional (2D) sys-
tems has been applied to explain uniform super-
conducting films. ' ' In a film the vortices form a
triangular lattice in the ground state whose melt-
ing causes the transition. However, for arrays
the lattice introduces a periodic pinning potential
which cannot be viewed as a weak perturbation on
a uniform film. In the ground state the vortices
are constrained to lie at the pinning sites and thus
uniform-film treatments are inappropriate. We
have studied a class of "uniformly frustrated"
xy models which map onto the Josephson-junction
array problem. The frustration f= Ha'/4, is the
fraction of flux quantum 4p of the external field
per unit cell of area a' of the lattice. In a pre-
vious paper' we focused primarily on the phase
transition in the particular case off =-', . We
showed, using Monte Carlo simulations, that a
resistive transition occurs at a finite tempera-
ture and that this transition was more complex
than the KT transition of the unfrustrated (f = H
=0) xy model or the KT melting transition of the
flux lattice in thin-film supereonductors.

In this paper we discuss the case of general f,
paying particular attention to the connection to
experiments. We exhibit results for the ground-
state energy Ep and the zero-temperature critical
currents for various rational values of f. We
then present the main result that for rational f
=p/q the transition temperature obeys the in-
equality ksT, (f) an iE,(f)~/2q. We discuss the
implications of this result for resistivity meas-
urements, and find good agreement with available
data. The detailed nature of the phase transition
at various values of f is deferred to a future pub-

lieation.
Our model is given by

X= —Jo Q cos(8 )
—8 —()g),

tl $d)

where I9,. is the phase of the supercondueting node
at a site f of a square lattice, (ij) denotes near
neighbors, and g„=(2e/itc)1',. A, &

d1 is the inte-
gral of the vector potential across junction (ij).
The g, , satisfy the constraint that the sum around
any unit cell is given by

g, ~ + g,»+ i/)„, + g. „=2' = 2w&g'/40, (2)

where V x A =Hz is the external field and g the
lattice constant.

We first discuss the applicability of the model
[Eq. (1)] to real arrays The .Hamiltonian X is
clearly periodic in f with period 1, and is reflec-
tion symmetric about f=z on the interval [0, 1].
In experiments, however, this periodicity in f is
seen to be modulated by an envelope function.
This can be accounted for within the model by
noting that the bare coupling Jo in Eq. (1) will in
general be H dependent. This dependence is easy
to understand for proximity-coupling junctions.
For junctions with an effective area & «a', one
expects Z, (H) to have a periodicity HA/C „cor-
responding to every time an additional flux quan-
tum threads the gap. Additional effective IJ de-
pendence may arise as a result of the finite width
of the junction and the nonuniform current distri-
bution across it, which is not accounted for in
our simple point-junction model. Such effects do
not appear to be completely understood.

In addition to depending on H, the bare Jp will
also depend on temperature. In the following we
take Jp constant and thus all our results must be
scaled by the known function J,(T, 8) before com-
paring directly to experiment. '

In Eq. (1) we have also assumed that the local
field H is equal to the uniform applied field. This
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will be a good approximation provided that the
sample size I. is small compared to the trans-
verse penetration depth A. .' We note in passing
that a 2D grid of superconducting wires belongs
to the same universality class as the model de-
scribed above and should display the same quali-
tative features to be discussed below.

The Hamiltonian (1) maps' onto a Coulomb gas
problem on a dual lattice with charges q„=n-f,
where n is the integer vorticity of the phase vari-
able 6 and f is the uniform background charge due
to H. The neutral ground state thus consists of a
lattice of charges 1 -f and -f. For f =P/q
(henceforth p and q are taken with no common
factors) we have assumed the ground state to be
periodic with unit cell q& q. In Fig. 1 are dis-
played ground-state lattices for several rational

We have studied the T=O properties of the Ham-
iltonian by doing Monte Carlo simulations on q
x q lattices with periodic boundary conditions.
(For several. f the assumption of q x q periodicity
was checked by calculating on nqx nq lattices. )
Our results for the ground-state energy E, for
f =p/q, q &8 are shown in Fig. 2. Once the simu-
lation has determined the location of the charges
as in Fig. 1, Ep may be computed exactly by sym-
metry arguments applied to the phase differences
across bonds. Eo(f) is clearly nonmonotonic on

fE[0,-', ] with -sharp features at several f."
We next compute the T =0 critical current for

X~ = —J, icos(8, —8, -A . + 5e, . x)
&ij)

which continuously evolves from the ground state
as 5 is increased from zero. Again, periodic
boundary conditions on 8,. are imposed. This
prescription is just a change of variables from the
Hamiltonian (1) with the twisted boundary condi-
tions 0(x=N)-6(x=0) =NO, and puts the system
into a metastable state carrying a net current
i(5;f). The T =0 critical current is just the max-
imum current that the system can carry":

i, (f) =
max ~i(5;f). (4)

In Fig. 3 are plotted i, (f) obtained from Monte
Carlo simulations using X~ for f =p/q, q &8.
The large variations in i, (f) as a function off
should be noted. This feature may be generalized
for arbitrary f by considering i(5;f) in Eq. (3).
Let us observe that i(5;p/q) is periodic in 5 with
period 2n/q and antisymmetric about n/q in the
interval [0, 2n/q]. " Next, we note that for 0
& i(5) &i, we have the bound" di /d 5 &e IE,(f) I/h.

Combining these two observations with the mean

an Nx Pf lattice by considering

i(6.f)- ~ Jog sin(y cp „—2pfy + 5) (3)
2g

t

where the gauge A = yIIx has been chosen and the
y,. are the phases corresponding to the local
minimum of the Hamiltonian
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FIG. 1. Ground-state lattices for several rational
A plus denotes a charge 1 —f' (or equivalently the

location of a unit vortex in phase 9), while an empty
box denotes a charge —g.
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FIG. 2. Ground-state energies for several rational
|Note that —Eo is plotted. ) The dashed line is a

guide to the eye only.
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FIG. 3. Zero-temperature critical currents i (de-
noted by solid circles) and zero-current critical tem-
perature T (denoted by open circles) for several ra-
tional f. The error bars at f=4 are the characteristic
error in our computed T 's. The dashed line is a guide
to the eye only and is not meant to imply that i is a
continuous function of f. [In fact, Eq. (5) shows quite
the contrary f t

value theorem yields the bound on i,(f):

, (Plq)=[ IE.(f)l/~] /q. (5)

Thus i,(f) exhibits dramatic discontinuous vari-
ations with f.

Note that i,(f) of Eq. (5) is the current above
which a nonzero voltage first appears. This need
not, however, be the current i* at which the I- V
characteristic displays its most rapid variation,
rising to saturate at its high-current limit. This
latter current i~, which may be viewed as the
experimentally defined critical current, is ex-
pected to be of order i* =(e/h)iE, (f)i.

Turning now to the case of zero applied current
but finite temperature one expects on energetic
grounds that

u, T,(f) ~(h/2e)i, (f).
Once the temperature is large enough to produce
average current fluctuations in the array of order
i„vortices will be able to move, and a resis-
tive transition will occur. (The inequality allows
for other mechanisms producing a transition
earlier. ) In Fig. 3 we have plotted on the same
graph as i, of T=O, the values of T, for f =0,
-', , ~, & obtained from Monte Carlo simulations as
described in Ref. 7. For these cases the asser-

FIG. 4. Schematic plot of resistance vs field f =Ps2/
40, for a sequence of temperatures: T4 & T (3) & T3
( T~ (2 ) ( T2 ( Tf ( T~ (0) ( TD Note that the curves will
be periodically extended on the integers f.

tion (6) is satisfied. Combining Eqs. (5) and (6)
produces a bound on T,(f):

I,T.(P/q) ~ siE.(f) i/2q. (7)

By the symbol "s"we allow for equa. lity within
factors of 0(1). It is the dependence of the bound
on 1/q that is crucial. Suggested by (7) is the
conclusion that T,(f) =0 for irrational f.

A simple understanding for the bounds (6) and

(7) may be given for the case f= 1/n, n large.
Here the ground state consists of a lattice of
charges q, =1-1/n separated by a distance -n'~'p
from each other. The sum of gauge-invariant
phase differences around the unit cell containing

q, must be 2w(l -1/n} and so the phase across
each bond in this cell is &w(1 —1/n). The ground-
state current in each bond is then (2e/5) J, sin[&s
x (1 -1/n)] or almost equal to the critical cur-
rent of the bare junction. Thus any additional
current imposed on the junction will force it to
go normal permitting the charge to move, Qf
course the resistance g due to these moving
charges is only of the order of their density, i.e.,
1/n The res.istance will remain low until a tem-
perature k~ T =E,(f)/2 is reached at which point
additional charge pairs 1 —1/n, —1 —1/n prolif-
erate (analogous to the +1, -1 charges of the f
=0, KT picture} driving A to its high-T limit.
Similarly, we find in our numerical studies that
for f =P/q, as q increases the ground-state cur-
rent configuration induced by the field contains
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a certain fraction of bonds which carry current
increasingly approaching the bare-junction criti-
cal current. These bonds are readily driven nor-
maI. by appl. ied or thermal fluctuating currents
and hence cause a reduction in i, and T, from
values off=p/q with smaller q.

We now consider the implications of (7) for the
array resistance R(T;f). Consider an f, =p, /q,
such that T & T, (f,), and so R(T;f,) =0. For all
f=P/q sufficiently close to f„q» q, and hence
by (7), T, (f) & T and R(T;f) &0. Since f =f„we
may regard the ground state of f as being built
of the lattice for f, with a superlattice of defects
or domain walls to ensure charge neutrality. The
charge contained in these defects is just f -f,.
Below T,(f), these defects are pinned. However,
when T,(f) & T & T,(f,), the defects unpin and
their motion will give rise to nonzero A. As re-
sistance will be proportional to the number of
free charges we find for f =f„

R(T;f)- lf -f.l. (8)

Qf course, inhomogeneities in the experimental
system, or fluctuations in the applied H, could
round off such a cusp.

Our conclusions are summarized in Fig. 4. To
wit, the experimentally measured R(H) for differ-
ent values of T can be understood in terms of the
sequence of critical temperatures T, (H) for dif-
ferent values of the field. Consider a tempera-
ture T, in Fig. 4 such that only two f's (f = O, z)
exist such that T, & T,(f). The resistance is zero
at these values of the field and shows an increase
for values around it. When the temperature is
increased to T„T,(0) & T, & T,(z), one finds a
residual valley in R(H) around f =-', and it persists
for a range of T above T, (&). When the temper-
ature is lowered new valleys appear at those H
corresponding to the next highest T,(f). The
specific sequence may depend on the lattice struc-
ture, etc. , but we emphasize the general qualita-
tive behavior of R: At any fixed T, only a finite
number off values will have zero resistance and
this number increases as T is lowered. These
qualitative features, in particular the valley at
f =&, have been observed in experiments reported
in Refs. 1 and 3.
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Consider the transformation d —p' = p + 2vr/q and
note that i(p') may be recast in the form i(p) by shifting
the lattice in the y direction, y,. =y, + n, where yg is
determined by np + ~q =1 for integral ~. That such
integers z and ~ always exist for coprime p and q is
an elementary result in algebra. The antisymmetry
about z/q is shown similarly.
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If (~ ~ ~ ) denotes a thermal average with respect to H&
and (s„)the average energy in the x bonds, then one
finds

d—,&z(d;f)) =-—&u„(d;f))
2e

(&i'(6;f)) —&i(d;f )&')
2ekpT

= ——&s„(n;f)&= '—„lz, (f) I.
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