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Second-Harmonic Reflection from Silicon Surfaces and Its Relation to Structural Symmetry
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Second-harmonic reflection from Si(100) and Si(111) surfaces exhibits a strong depen-
dence on the angle of rotation of the sample about its surface normal. This behavior can
be related directly to the structural symmetry of the crystal and of the surface. Analysis
of the results shows that the surface and bulk contributions to the observed second-har-
monic signals from Si are generally of the same order of magnitude.

PACS numbers: 68.20.+t, 07.60.-j, 42.65.+q, 61.50.Em

Recently the process of optical second-harmon-
ic generation (SHG) has been exploited to study
the spectroscopy and orientation of molecular
monolayers adsorbed at interfaces between two
centrosymmetric media. ' The simple case of a
bare surface of a crystalline medium is clearly
also of interest. While the early work of Bloem-
bergen et al. ' indicated that the SH reflection from
crystalline silicon was independent of the cut and
orientation of the face, current investigations'4
show that this is not so. Here we report results
for SHQ from different silicon faces as a function
of the crystal orientation. The observed varia-
tion in the SH intensity as the sample is rotated
about its surface normal is governed by the sym-
metry of the crystal and of its surface. A theory
incorporating the response of the surface layer
by a sheet of polarization and of the bulk by mag-
netic-dipole and electric-quadrupole terms is
presented and is shown to be capable of accurate-
ly reproducing the experimental data. By com-
paring the behavior for (100) and (111) faces of
silicon, we are also able to determine directly
the relative importance of the surface and of the
(electric-dipole-forbidden) bulk contributions to
the SHQ.

Away from the surface of a centrosymmetric
medium, there can be no electric-dipole (local)
contribution to the SHQ process. Then for a
material such as silicon with 43m symmetry, the
dominant nonloeal contribution to the nonlinear
polarization at the SH frequency induced by an
eleetrie field E at the fundamental can be cast in
the general form
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ent in isotropie media, ' while the last term is
anisotropie. For excitation of a homogeneous
medium by a single plane wave, note that only the
last two terms are nonvanishing.

In the surface region, the inversion symmetry
of the bulk is broken and we expect a large con-
tribution to the nonlinear polarization. We repre-
sent this term by a sheet of nonlinear polariza-
tion P"s located just inside the medium. This
layer of nonlinear polarization can be related to
the electric field at the fundamental frequency by
P" = y":EE. The structural symmetry of the
surface is, of course, reflected in the form of
the nonlinear susceptibility tensor. For a (100)
surface with 4m symmetry, g

"~ turns out to be
isotropic. The tensor then has three independent
elements, namely, y»~", y~j~~~, and X~j J )) p

where II and & refer to directions parallel and
perpendicular to the surface. In the case of a
(111)surface with 3m symmetry, an anisotropic
term appears. This term is characterized by

y&&&

"~ with the $ axis defined by the projection of
the [100]crystal axis on the surface

The SH radiation arising from the bulk and sur-
face polarization ean be calculated in a straight-
forward fashion. ' Under excitation by a single
plane wave, the s- and p-polarized components
of the SH reflection are

P, "=pL, (V E.)+(r- p. —2&)(E v)Z,

+ yV,.E'+ gE; T,-E, . with

& (k,„P,gg, + k„P,gg „"), (2b)

This expression has been written with respect to
the principal axes of the crystal, and p, y,
and g are constants describing the material's non-
linear response. The first three terms are pres-
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Here we have chosen z to lie normal to the inter-
face between (linear) medium 1 and (nonlinear)
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FIG. 2. Intensity of the p-polarized SH reflection
from a Si(111) face under p-polarized excitation.
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FIG. 3. As in Fig. 2 for Si(100).
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which we can then deduce a value for I$1 alone.
Experimentally, we found Iy&&&+a&I = 2.91aPI with

IaI =0.066 for the specified geometry and e(~)
= 17.0+ i0.4 and e(2 ~) = —13.9 + i15.4. ' Allowing
for all possible phase differences between

I y&&&"~I

and Ig we can conclude that 0.121pl ( Ixggg"'I
(0.26 &1.

When the analyzer was rotated away from s po-
larization the isotropic terms were introduced.
The interference between this orientation-inde-
pendent part and the orientation-dependent part
caused the amplitudes of alternate peaks to in-
crease and decrease. For the (111)surface, the
three minor peaks at 6 =m/2, Vn/6, and lln/6 al-
most completely vanished in the P-polarized out-
put as shown in Fig. 2. This indicates that the
isotropic term 5 and the anisotropic amplitude
c(g&H

"~+a/) in Eq. (5) must be of nearly the
same magnitude. Indeed, setting b = —c(y&&&~~

+a&), we see that the theory matches the experi-
mental. data in the figure. For the (100) surface,
a similar interface effect arises between the iso-
tropic and anisotropic terms. Since the isotropic
contribution is larger in this case, the SH inten-
sity of Fig. 3 shows a modulated form with four
peaks and four valleys. The experimental data
could be reproduced closely by Eq. (6) with d
= —4. 3eI&I. From our analysis of the shape of
these and similar curves for different polariza-
tions, we can estimate the relative values of iso-
tropic terms. We infer

I
y„„"

I

-
I g „i, —yI

-IgI, while
Ig&&&

"~1-0.2IQI, as mentioned above.
A more accurate determination of these param-
eters requires knowledge of the relative phases
of the various terms in the nonlinear polariza-
tion.

The surface region here is defined as the sur-
face layer between air and the centrosymmetric
bulk. It includes presumably the silicon oxide
layer at the surface, the disordered Si layer cre-
ated in the polishing process, and the transition

layer between disordered and crystalline bulk Si.
Only the transition layer can contribute to the
anisotropic surface susceptibility

g&&&
"~. The

value of X&&&"~ appears to be significantly smaller
than that of the isotropic part of g" . This is
understandable since g&&&~~ is derived from the
lack of inversion symmetry in the surface plane,
while the other elements of y" are related to the
lack of inversion symmetry perpendicular to the
surface. Despite the relatively small value of
the anisotropic tensor element, this term still
makes an appreciable contribution to the SH sig-
nal because of its higher radiation efficiency com-
pared with the isotropic term. This higher ef-
ficiency stems from the larger Fresnel factors
for electric fields in the medium lying parallel
rather than perpendicular to the surface.

In summary, we have observed anisotropic re-
sponse in the SHG of crystalline silicon. The SH
signals as a function of rotation about the surface
normal for (111)and (100) faces have been meas-
ured for different combinations of input and out-
put polarizations. These results can be well ac-
counted for within the framework of a simple the-
ory relying on the material's symmetry proper-
ties. From our analysis, we find that the surface
and bulk make comparable contributions to the
SHQ for silicon samples. In addition to the ex-
tension of this work to other simple crystalline
surfaces, such measurements should permit a
determination of the symmetry of ordered layers.
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