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Size-Dependent Properties of a Two-Dimensional Solid near Melting
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The behavior of a two-dimensional solid near melting is analyzed by the molecular-
dynamics technique. Two size-dependent properties are determined: the mean ampli-
tude of vibration (P) from the lattice positions and the elasticity (shear modulus p),
which vary logarithmically with system size. When the size is increased to give 0
=0.18 the particles begin to diffuse and the elasticity is close to its predicted melting
value. The result demonstrates that previous computer models have been too small to
simulate bulk solid near melting.

PACS numbers: 68.10.Jy, 05.70.Fh, 64.70.Kb

The thermodynamic and dynamic behaviors of
a two-dimensional (2D) system at melting have
been the subject of controversy for a long time. '
Computer-simulated systems show a traditional
first-order phase transition. Qn the other hand,
new experimental data' support the theory' ' that
melting in 2D could be continuous. A continuous
transition is associated" with long-range correla-
tions which are suppressed in the small computer
models, ' and in the present Letter I have analyzed
size-dependent properties of a 2D solid near (or
at) melting. The system consists of particles
which interact with repulsive Lennard- Jones
forces [Weeks-Chandler-Andersen (WCA) sys-
tem'] and the 2D medium is simulated by the
molecular-dynamics (MD) technique. "

There are several reasons for choosing the
WCA system. The main reason is that I want to
study the indirect influence of the system size on
the local structure and behavior, and in the WCA
system a particle interacts only with its nearest
neighbors. Systems with pure short-range forces
have already been studied. The advantage, how-
ever, of the WCA system is that the WCA system
is not in the "high-temperature limit, " since it
does not scale, but depends thermodynamically
on both temperature, T, and density, p, and the
abnormal melting behavior might only be present
at low temperatures. 4 The MD calculations are
performed at the relatively low temperature 4T/
a=1. Systems of ¹ 256 and iV=1024 exhibit the
usual first-order melting behavior (Fig. 1). The
tie line of equal chemical potential between fluid
and solid (dot-dashed line) is calculated with use
of the data in Ref. 6 and by gradually "switching
off" the attractive potential (A. expansion"). The
tie line pressure, Pt '/e =13.1„ is higher than
direct1y observed and is believed to be an upper
limit"" above which the stable state should be
the triangular solid, no matter how large the
system is. The solid state in this (T, p) region
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FIG. l. &T/e=1 pressure vs density isotherm. The
full line and the solid points are for %=1024; the dot-
ted line and the circles are for %=256. The tie line
between bulk solid and fluid with equal chemical po-
tential is also shown (dot-dashed line).

is analyzed by varying the size of the system.
Two size-dependent properties are determined:
the mean amplitude of vibration from the lattice
positions and the elasticity (shear modulus),
which both show a logarithmic size dependence.

The logarithmic divergence in a 2D system has
been known for a long time. ""A simple Debye
theory gives a logarithmic divergence of the rela-
tive mean amplitude of vibrations, or Lindemann's
ratio, I9, and in itself it is not alarming, since if
the modes do not couple, the system might be
astronomically large before a particle has
changed lattice position; the divergence has been
considered as a property of the ordered state in
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2D. The ratio 0 is obtained as

by time averaging, where d(p) is the lattice dis-
tance. This definition does not refer to a certain
structure, and so frozen defects do not obscure
the result that when the system size at constant
p and T is increased to a point where 6 )0.18 a
fraction of the particles diffuse and 0 diverges
with time. Figure 2 shows isochores of 8 at AT(
a=1 as a function of lnN. The isochores px '
=1.15 (inverted triangles) and 1.16 (crosses) cor-
respond to points of state in the coexisting phase
region (Fig. 1), and the system should indeed
melt when the size of the system is increased,
as observed. On the other hand, the isochore
pr '=1.17 should be above the coexisting solid-
state density (pr ' =1.16) where the system is
stable. This might not be the case, however. In
a system of N=8100 particles at p~ '=1.17, the
particles began to diffuse, but first after 50000
time steps.

Figures 3(a) and 3(b) give a dynamic and topo-
logical picture of the onset of diffusion in this sys-
tem. Figure 3(a) shows the locations of particles
which, in 10' steps, have changed lattice posi-
tions. The diffusion is located in four regions
(a, b, c, and d) and shows up as consecutive
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jumps. Figure 3(b) shows the crystal defects"
after the 10' steps, where g, 5, t.", and d refer
to the defects associated with the diffusion. De-
tailed analysis of Figs. 3(a) and 3(b) and corre-
sponding pictures for the next 2 x10' steps showed
that regions with consecutive jumps always con-
tain defects —often in small loops of =10 parti-
cles~ut as Fig. 3(b) demonstrates, there are
also defects and loops elsewhere. Diffusion in
3D crystals is well knonw and so one could argue
that the present calculations only show that the
system exhibits bulk diffusion for a size which
allows for vacancies, interstitials, etc. But the
new state in 2D appears at a certain value of a
mean parameter (0) which indicates a thermody-
namic change and results in consecutive jumps—or diffusion with a very high frequency, e.g. ,
corresponding to the order of 3 x10" jumps/s
cm' for a noble-gas monolayer.

Anothe r indication that 2D melting of soft par-
ticles depends on the size of the system is ob-
tained by calculating the Lam& coefficient,
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FIG. 2. The relative mean amplitude of vibration,
0, as a function of system size, lnN. The isochores
are py =1.15 (inverted triangles), 1.16 (crosses),
1.17 (triangles), 1.18 (circles), and 1.20 (squares), and
are obtained from more than 4 x 10 time steps per
point. However, the two points which show onset of
melting are obtained from only 2 x 103 steps (cross)
and 7 && 10 steps (triangle), respectively, since at
melting 0 diverges slowly with time.

FIG. 3. (a) The mean positions of particles, which,
within 104 time steps, diffuse. (b) The crystal defects
obtained from the positions after the 10 steps (=10 ' s).
Particles with coordination numbers 5 and 7 (and 8)
are given by solid and open circles, respectively.
There is a correspondence in locations , b, p, and d
between regions with diffusion and with crystal defects.
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FIG. 4. The stress p„„ in a N= 64-particle system
at the density pr 2=1.18. The points for the strain
0.005, 0.02, and 0.04 are obtained for 105 time steps.
The point for 0.01 is for 2,5 x 106 steps.

( /~6~)P p/p
1+ p/(p ep/ap)

(2)

The pressure, P, increases a little with in-
creasing size (Fig. 1), but the compressibility,
determined from the isotherms near melting, is
almost independent of ~. Thus, as a consequence

The coefficient is determined as described in Ref.
11, by applying a small homogeneous shear
strain. It is calculated for N=64, 256, and 1024
at pr '=1.17 and 1.18. The crystals were only
subjected to small strains (+0.005 for pr '=1.17
and +0.005 and +0.01 for pr '=1.18). Figure 4
demonstrates that the obtained stress is well in-
side the linear regime for these small values.
The instantaneous value of p fluctuates, "which
necessitates very long calculations in order to ob-
tain a significant result. The lengthy computation
was carried out for different starting configura-
tions and for different signs of the strain and, "
at the end of the calculations the systems were
observed to relax to their unconstrained equilib-
rium configurations within a few' hundred time
steps by releasing the shear strain, with all the
particles maintained at their original lattice posi-
tions.

Figure 5 gives p, as a function of lnlV. The un-
certainties are the rms deviations from the means
and are obtained from the independent subsets.
The six points show a logarithmic size depend-
ence. According to Nelson and Halperin4 a cer-
tain combination, K, of the elastic coefficients
takes on the universal value 16m =50 at melting.
For the triangular lattice

FIG. 5. Shear modulus, p, , as a function of lnN.

of the size dependence of the shear modulus, &
decreases logarithmically. Previous computer
simulations show melting for a slightly higher
value of K (=55-60). By extrapolation of the re-
sult in Fig. 5, Kis estimated to reach a value
=55 for N=40 000 for pr ' = 1.17, but the estimate
is uncertain.

To eoriclude, the present calculations primarily
show that computer systems of the order of a
thousand particles are too small to simulate melt-
ing in soft-disk systems. With an increase of the
system size for a solid near melting, the parti-
cles begin to diffuse. This state must be included
in a statistical mechanical equilibrium average
before the nature of the transition can be deter-
mined. The onset of diffusion is observed at a
system size where the combination & of the elas-
tic coefficients is near its predicted melting val-
ue. Secondly, small computer systems cannot be
used to test melting theories which treat the 2D
system as an elastic medium since the shear
modulus for the small systems shows a signifi-
cant size dependence. Finally it should be pointed
out that the established number dependence of p,

and 0 does not permit an extrapolation to larger
N and/or lower temperatures since many other,
and converging, functions fit the few data for the
shear modulus and since the critical value of 6I

might be temperature dependent. Thus the pres-
ent result does not resolve the problem of the
order of the melting transition in 2D.
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See, e.g. , papers in Ordering in Takeo Dimensions,
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