
VOLUME 51, NUMBER 21 PHYSICAL REVIEW LETTERS 21 NOVEMBER 198$

Energetic Particle Stabilization of Ballooning Modes in Tokamaks
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Introduction of an anisotropic, highly energetic trapped-particle species into a
tokamak may allow direct stable access to the high-beta regime of second stabil-
ity. Under certain conditions, the mode at marginal stability acquires a real
frequency close to the precessional drift frequency of the energetic particles,
perhaps correlating with recent "fishbone" observations on PDX.

PACS numbers: 52.35.Py, 52.35.Bj, 52.55.0b

Plasma stabilization by an energetic particle pointed out recently by Connor et aE. , who ana-
component has been proposed and analyzed in the lyzed isotropic circulating particles in the zero-
Astron' and ion ring devices" and in the ELMO bounce-frequency limit. The ballooning stability
bumpy torus. 4 In the latter, annuli of hot elec- of anisotropic tokamaks has also been examined,
trons provide stability for the toroidal core plas- without kinetic effects' but with finite gyroradii. '
ma. Because these hot electrons precess so Here, we analyze ideal magnetohydrodynamic
rapidly, they tend to be rigid with respect to (MHD) ballooning stability when a fairly aniso-
usual E~ B Auid displacements and hence create tropic population of energetic particles is mirror
a stabilizing diamagnetic well. In this Letter we trapped on the unfavorable-curvature side of a
suggest that energetic particles could have sim- tokamak. These particles are assumed to drift
ilar value if introduced into a tokamak. Whereas across field lines rapidly: es»» ~~~, where &u„»

continuous introduction of hot particles is essen- is their bounce-averaged magnetic drift frequency
tial for stability in the bumpy torus, in a tokamak and cu is the frequency (or growth rate) for the
they may only be required until the plasma reach- perturbation of interest. Also, since they are
es the second stability region" where stability trapped on the outside, we assume that &u~»/&u, »

may improve with increasing beta, as has been & 0, with ~+„ their diamagnetic frequency.
shown at least with respect to ballooning and in- Under these assumptions, we can investigate
ternal kink modes. linear stability by means of the low-frequency

The stabilizing effects of fast ions have been kinetic energy principle"~' bW= bW&+ 6W», where
the fluid term is

bW~ =-', f (ds/B)(v~V S ~'(b VC)'.+ ~[@„-(o/~)Be ~ »4]'- (e ~ ~)[e VP~~+(v/~)e VP,]4')
and the kinetic term (for the non-MHD energetic species) is

fd d, [~(ds/v II)( @ttll + v II e n@)1
f(ds/v ii)(Pe 'VB+ vii e ' ")

Here, q ~~
is the (f.agrangian) magnetic field perturbation pa, rallel to the equilibrium field B = bB, and

C is the perturbed electrostatic potential; I'
~~

are the total pressure components; s is the arc length
along a field line, and V =V -(VB)B/BB, a= 1+(P,-P~~)/B', ~ =1+(BPJBBB), n =(b V)b, p=v, '/2B,
and E = v ~~'/2+ AuB. We have restricted attention to high-mode-number interchange-ballooning modes,
whose transverse variation is in the eikonal S, where b VS =0 and e=B x VS/B'. Equation (2) per-
tains to the high-bounce-frequency limit, appropriate for trapped fast particles, in which their dis-
tribution function I'„ is constant on a field line. Hot particles trapped on the outside of a tokamak
stabilize through 5lV„, but are destabilizing in BlV&.

To simplify the analysis of 5W„, we invoke the Schwartz inequality to obtain a lower bound: 5W~
- OW„with

l (f(ds/B)[(q„~/B)e VP~+(e n)(e VP„»)e]]
2 j(ds/B)[B '(e VB)(e VP,„)+(e ~)(e 'VP)~»)]

A pessimistic estimate of stability can then be obtained by first minimizing 58'~+ 5W, with respect to
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Q ~~
to obtain Q ~~

——(o/w)BC (e ~) —(I /7B)(e VP )A, with

f(ds/B)(e ~)[e VP~~„+(o/~)e VP ]C
f(ds/B)((e «)[e VP~~„+ (o/T)e VP,„]—(I/TB')(e VP~)(e VP, )j '

where P~ and P, are the hot and (isotropic) core plasma pressures. The line integrals in Eqs. (3)
and (4) are to be performed over the jth trapped-particle region. Next we vary with respect to 4 to
obtain the integrodifferential ballooning equation

B V[(olVSI'/B')B VC]+(e ~ «)[e'VPii+(o/~)e'VPJC =(e ~ «)[e VPii«+(o/w)e VP~]A.

(4)

The general solution of Eq. (5) is C = 4, + cC„
where C, is the homogeneous solution and 4, is
the particular solution for A= 1, with c then de-
termined by Eq. (4). The solution is successive-
ly generated by solving for 4, and 4, in each
trapped/untrapped region. If 4 is well behaved
at infinity and does not change sign for lsl & ~,
the equilibrium is stable.

Note that for small core-plasma beta, the right-
hand side of Eq. (5) can be expanded to show that
ballooning instability is then driven only by the

92 1 8 8 BG
g+ V( ~ V lno' =

(eR' R 8R 8+' o' sg o

! core pressure gradient, while the hot particles
contribute a stabilizing diamagnetic well. For
large p„ the integrand in the denominator of A.

can vanish; this is related to the core beta limit
predicted for bumpy tori' but for our problem
occurs after drift reversal.

In order to apply Eq. (5) to our stability prob-
lem, we must first obtain an appropriate equilib-
rium. With B = Vg x VP in Clebsch form, the
poloidal flux g satisfies the anisotropic Grad-
Shafranov equation"

ll (8)
Bg

with G(p)=-', (oRBr)', Br =RB Vy the toroidal
field with q the toroidal angle of symmetry, and
R and Z the major radius and symmetry axis co-
ordinates. Parallel pressure balance requires

V(PH/B) = —(P JB')8 VB. We consider large-
toroidal-mode-number ballooning modes, take
BS/9&=0, and solve for Vp =5x Vg/lvtpl'+ Avg.
Its covariant component normal to a flux surface,
A, is the local shear' and satisfies B~ VX=V

(V yBr/Rlvgl'), with 8, = Vq x Vg the poloidal
field.

To proceed further, we adopt a model equilib-
rium"" in which the aspect ratio is large (r/

! R « I), the flux surfaces are shifted circles, and
the plasma beta is small but has a finite gradient
localized radially in a thin layer. Also, we take
P „=const for !8!&6, and zero elsewhere. For
the beta values of interest here, we will put 0
= 7. =1. Strictly speaking, the sharp P» distribu-
tion that we take for convenience would make z
& 0 at

l
8

l

= e„hence our results should be con-
sidered as representative of what would obtain
for a slightly smoothed-out distribution. En this
model the equilibrium equations can be manipu-
lated to give Vp =(q r/)[8 +rh( )8], with

h(6) = S(8 —8«) —a:,(sine —sine, ) —-', a„[g(6)—g(8„)],

sine —(8/m)[sine, + (v —e,)cose, ], 0 & 8 & 8„
g(8) = (I —8/w)(sineo- e, cose, ), 8O &8 &2n —6„

sine - (8/z —2)[sine, + (m —6,)cose,], 2z —8, & 6 &2p.

Here, S =rq'/q, q=rBr/RB~, and a= —2Rq'P'/Br', with primes for 8/Br. Also, 8 is now the extend-
ed poloidal coordinate of the ballooning representation, with 8 its value modulo 2m, and 8„(the radial
wave number) is a constant between 0 and 2n The ball.ooning equation (5) becomes

fd e 4D(e}—[I + h'(8) ] + (n, + v a. „)D(6)4 = -', a „D(e) f C

(8)
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FIG. 1. Marginal stability boundaries in shear S and
normalized core beta e, for maximal hot beta and
various degrees of localization 00.

with D(6) = cos6 + h(6) sin6.
Figure 1 shows various stability boundaries in

shear S and core beta a „with the beta of the
hot particles n ~ and their degree of localization
8p as parameters, for q= 2 and 6~ =0. The two
dashed curves show the well-known boundaries
for first and second ballooning stability (without
hot particles). The dotted lines indicate where
drift reversal occurs at zero Q. „according to the
condition m~„(6,) = 0 which is easily expressed in
terms of elliptic integrals. Thus, use of the
Schwarz inequality limits the validity of our
stability analysis to the left of the dotted line for
a given 6p. The solid curves in Fig. 1 are the
stability boundaries in the presence of hot parti-
cles; at every point on these curves, e„ is chos-
en to have its maximum value allowed by the con-
dition co„„u+„)0.

Although this procedure underestimates stabil-
ity, the results in Fig. 1 nevertheless indicate
that energetic particles trapped, for example, be-
tween 6 = + v/4 are able to stabilize ballooning
for shear values up to S=0.9 and for core beta
values up to and beyond the second stability
threshold. As Op increases, the amount of stabil-
izing energetic plasma that can be introduced
also increases, but the drift-nonreversal condi-
tion becomes more stringent; hence, optimal sta-
bility occurs at the intermediate value of 6, =w/4.
For q = 4 and 60= v/4, stabilization extends up to
S =1.9, appropriate near the plasma edge. Also,
the value of 61„was varied, to consider modes
peaked off the midplane. With q = 2 and 6, = n/4,
the stability boundary for 6„=3m/8 (approximate-

ly the most unfavorable 6„value for large a, )
has virtually the same minimum in shear at S
=0.9 as the curve for 6~ =0, but dips abruptly to
S = 0.6 at the intersection of the second stability
and drift reversal boundaries.

We conclude that it is possible to bridge the
ballooning gap between first and second stability
by means of energetic particles, which are no

longer needed after second stability is attained.
Presumably the same scheme could be used in
other devices, as has been suggested for the
Heliac by Furth and Boozer. '4 The technological
requirements for injection or heating of the hot
particles, as well as their power balance, de-
serve further study. Rather high energies are
required, as will be seen below. Microinstabil-
ities, such as whistlers or modes near the ion
cyclotron frequency, may be possible. On the
other hand, finite gyroradius and banana width
of the hot particles could improve stability,
whereas their slowed-down component could be
drift-resonantly destabilizing. Moreover, the
same theory as desc ribed in this Letter can be
applied to "sloshing ions, " i.e., with co„„cu „(0,
which are found to provide an alternative means
for stabilizing a tokamak; although difficult to
produce, they do not lead to residual resonant
destabilization.

Finally, we note that when the precessional
drift of the energetic particles is not large enough
to decouple them, marginal stability occurs with
a real frequency close to ~,„. A simple discus-
sion of finite frequencies can be based on de-
composing the energy 58'= —~'58',. + 58'f + 5R fp
+ 58'» into fluid and kinetic energies for the core
and hot species, with 6TV,. for ion inertia. Let
~" determine the low-frequency (~/v„„-0) sta-
bility as discussed previously, and let su~'
= (d' —

y& determine the fluid stability, where y&

is the growth rate for an unstable flute driven by
the hot pressure gradient. The kinetic energy can
be approximated for monoenergetic hot particles
as

r, '(~„/~*.)(~ - ~*.)/(~- ~-).
For co, co„~ &co ~, we thus obtain a cubic disper, -
sion relation: oP —~'co„„—~ ~'+ ~' 'co„„=0. In
the usual MHD limit of small ~„„, the expected
roots are cu'= ~~' and a small real root at ~
= ~~„(&u'/~ ~ )'. In the decoupled hot-plasma lim-
it of large ~„„analyzed earlier in this Letter, we
find co'= co" and a real root at ~= co,„. For finite
cu„„, stability requires

[I+ 3(u) ~/(u, „)']') [1+9((u„~'-3(u")/2(u, „']'.
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Thus the condition ~"& 0 on which our earlier
analysis was based is in fact a valid sufficient
condition for stability only if y„/&us„( 0.5, which
requires sufficiently hot particles to attain stabil-
ization. For instance, if we estimate y„=0.25
&& (N„T„/N, M, rR)'l' applying for m ) 2 and p ~
=P, with T„and N„ the hot-particle temperature
and density, this condition becomes T„/T,
) (rR)'l'/2mp„where T, and .p, are the plasma
ion temperature and gyroradius and rn the poloidal
mode number. For D-T-reactor-like parameters
(r=l. 5 m, R=5 m, 8=5 T, and T; =10 keV), T„
~ 2.1 MeV for m = 2 is required. We also find that
instability sets in at a finite frequency of order
co~„. For example, if y~' is very small, a reso-
nant mode occurs when ~~' = +„„', with onset at
co =co~„. A detailed evaluation for the case of in-
ternal kinks also predicts a similar onset. " This
result has been postulated as an explanation for
the recent observation on the PDX tokamak of
so-called fishbone oscillations, which rotate ap-
proximately at the precession rate of the injected
beam particles. "
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