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Ballooning Mode Stability of Bean-Shaped Cross Sections for High-P Tokamak Plasmas
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Indentation of a tokamak plasma on its inner-major-radius side is shown to be strongly
beneficial for achieving high-p stability against ballooning modes. With use of a set of
reasonable equilibrium profiles, it is found that moderate indentation provides accessi-
bility to the second region of stability. Ohmic equilibrium configurations which exhibit
the second stability region have not yet been found.

PACS numbers: 52.55.6b, 52.30.+r, 52.35.Py, 52.65.+z

The capability to create and maintain stable
plasmas with P ~

20'%%uo would comprise a major
technological advantage for a tokamak reactor.
However, the magnetohydrodynamic (MHD) bal-
looning instability could be a serious obstacle to
this goal. Several studies have been carried out
to find envir'onments favorable for suppressing
this mode." Recently, an empirical shape-
optimization study by Miller and Moore' has
shown that a bean-shaped plasma —inwardly con-
cave at the inner-major-radius side —can en-
hance the achievable stable P against ballooning.
A similar shape had earlier been found by Merci-
er' to enhance stability against localized inter-
change. In this paper we find that bean shapes
can exhibit strong local magnetic shear and short
connection lengths and, in fact, under certain
modest conditions make accessible the second
region of stability against ballooning modes.

If we write B=c'pxv(+@vs—= %uxor(, JXB
='p, and»&B = J, the Grad-Shafranov equation
takes the form

' x ''0 =J "=—(P'+kV'/&')

The poloidal flux is 2& (, x is the major radius,
p is the azimuthal angle in the cylindrical coordi-
nates (', p, &), and primes denote differentiation
with respect to g. Equation (1) is solved by use
of a flux coordinate code' in the fixed-boundary
mode, specifying the shape of the plasma boun-
dary. This shape is given by the bean" equation,

x =x +p cosy, ~ =Ep siny,

"here p =A(1+B cost), y =C sint, and 0- t & 2'
so that —C - y & C. Given &, B, C, and E, the as-
pect ratio is fixed by the choice of x. Unless
otherwise stated, A =1.0, 8 =0.6, b/a =1.386,
and R/a =4.0 (Fig. 1). The indentation parame-
ter, d/2a, is adjusted by changing C.

It is apparent even looking casually at the mag-
netic surfaces that a line of force on an outer
bean surface spends most of its life at values of

major radius smaller than the magnetic-axis ma-
jor radius. Because dl-Rdp and B-1/R, bean
shaping can easily make u = fdl/' smaller on the
outer surfaces than on the magnetic axis. To-
gether with finite shear, this average magnetic
well tends to stabilize interchange modes. Never-
theless, the plasma may be susceptible to bal-
looning perturbations which adjust themselves
within a surface to be large where the well is
weak or nonexistent, and small otherwise. These
modes are described by the ballooning equation
which can be written in the form' '

1B ~
~

~~2+ 2 I B.V4

2p' 8'
~2 ~g ~2

1+p + I 4 —0, 3

where v&=z ~ Vg, w, =' ~ BxVp, and ~=(B/B)
~ (v 8/B) ~ The first term contains the effect of
field tension, the second contains the potentially

R/a = 40
b/a = I.586

d/2a = 0.304
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FIG. 1. Geometry used to calculate the fixed-bounda-
ry equilibria. The flux surfaces are spaced in equal
increments of g'/~
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destabilizing pressure- curvature combination,
and the third term stems from fluid inertia.

Both the connection length and the local mag-
netic shear, S, play important roles in ballooning
stability theory. ' The dependence of Ec[. (3) on S
occurs through the integrated local shear, I; we
have
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g —= (Vg xV8 ~ Vy) '.
Since q(g) =(1/2v) fag/x'd0, then (1/2v) )SAd9
=q'(g), so that S is comprised of the averaged
global shear q'( j) plus a. residual oscillating part.

In a conventional tokamak the residual contribu-
tion to ~ can be so negative on the outer of the
major radius, where the poloidal field is usually
the strongest, as to make S vanish there Icf. Fig.
2(a)]. The vanishing of S is the condition that
surfaces containing both B and Vg exist and the
local interchange of magnetic field lines can be
most easily realized on such surfaces. However,
a strong outward shift of the magnetic axis can
appreciably strengthen the poloidal magnetic field
on the outside and cause the vanishing points of
~ to move away from the destabilizing region.
This shift may be realized by increasing the
pressure but, unfortunately, the onset of the in-
stability usually occurs before local shear and/
or connection length stabilization actually takes
place. Another route to stability, exploited here,
is to indent the plasma on its inner-major-radius
side so that the axis is effectively shifted even
at low P. Further increase of the pressure en-
hances the shift even more, thus rendering the
plasma immune to instability.

Contours of constant local shear in the neighbor-
hood of S =0 are shown in Fig. 2(a) for a moder-
ately indented low-p plasma. The local shear
here is zero and/or weak in the outer region of
the plasma. Increasing the pressure at this in-
dentation causes instability at about P —2.6%. A

stronger indentation, as shown in Fig. 2(b),
moves the S =0 contour farther out. In this ease,
even though the shear is still weak at low p [Fig.
2(b)] an increase in pressure IFig. 2(c)] strength-
ens the local shear at large major radius, pre-
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FIG. 2. (a)-(c): Contours of constant local shear S
at and near S=O showing its variation with p and in-
dentation. (d) Contours of constant normal magnetic
curvature. ~

serving stability by the self-healing process. '
Stabilization due to the shortened connection

length of the indented plasma is also effective.
The strong poloidal field at the outside of the
torus due to the indentation and finite pressure
causes the magnetic field lines to move rapidly
through the bad-curvature region while lingering
at the tips of the bean which are generally located
in areas of favorable normal curvature. As seen
in Fig. 2(d) there is a clear reduction in the size
of the dangerous region, where the normal curva-
ture is negative.

The effect of indentation was first studied by
numerical solutions of Eq. (3) with the profiles
q(y) =Eq~s', 0-~-3, andP(y) =p.(1-Y')'
where y =g/b g, 2«P being the poloidal flux with-
in the plasma. The coefficients q; were specified
such that q(0) =1.03, q(1) =4.2, q'(0) =0.843 75,
and q'(1) =9.0. The results are shown in Fig. 3.
At low indentation it is seen that an increase of
p, „=-2 Jp dv/JB'dv (obtained by increasing p, )
causes the plasma to become balloon unstable,
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FIG. 3. Stability plot of p vs indentation showing the
first and second regions of stability at low indentation,
At sufficiently high indentation the second region be-
comes accessible.
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but further increase of the pressure places the
~ e 8"13plasma in the so-called second stability regime.

Moreover, if the indentation is large enough, in-
creasing the plasma pressure bypasses the un-
stable region completely. Bean shaping thus pro-
vides a path for access to the second region of
stability of ballooning modes.

An alternative method for parametrizing the
equibbrium, instead of specifying the q(y) an
p(y ) profiles, is to fix the temperature profile
and then to use the Ohmic equilibrium condition,
(J B)/(B &P) =&T, ', to prescribe the current
distribution. The free parameter, E, is used to
determine either the total plasma current or the
safety factor on the magnetic axis. We then use
T,(P) =To[1-y4] and P(g) =P,[1-y2]2, the latter
being the same as in the flux-conserving sequence
described previously for the results in Fig. 3.
The exponents in the 1', profile were chosen to
avoid excessive current peaking and the corre-
sponding large shear or lack of equilibrium. Fig-
ure 4 shows ~ll „for several equilibrium config-
urations from Fig. 3 corresponding to different
P values for the indentation d/2a =0.3. For the
prescribed-q equilibrium at low P, the tempera-
ture profile is broad, has a plateau near the outer
edge, and does not go smoothly to zero, but to a
pedestal value T, (edge) - ~ T,(center).

This Ohmic equilibrium study is summarized in
Fig. 5, showing contours of ~, the infinite-~
eigenvalue on the most unstable surface, for a
continuous range of q, and (p). These configura-
tions provide improved P values in the first sta-
bility regime, but a second regime exhibiting com-
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FIG. 4. JIl~~ for equilibria where q(g) is prescribed.
The double-dashed curve is the corresponding profile
used in the Ohmic equilibrium studies. where T~(g) is
prescribed.
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FIG. 5. Stability diagram for ballooning modes when
the Ohmic equilibrium condition is used. Here A. =p

piete stabilization has not been obtained. It ap-
pears likely that the second regime may lie in
the upper right-hand corner of this diagram, but
a competing tendency for Q, d g, to increase as
both q, and (p) increase makes obtaining equilib-
rium difficult in this region. Different tempera-
ture profiles may possibly exhibit the second sta-
ble regime, and some tailoring of experimental
profiles can be effected by adjusting the time
signature of the tokamak transformer-induced
loop voltage. There are also non-Ohmic supple-
mentary heating methods and a future potential
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for steady-state current drive in which case the
current may have significant deviation from the
Ohmic one. It should be pointed out that the stud-
ies by Mercier' on a class of supplementary-
heated kidney-shaped configurations resulted in
plasmas stable for p & 3%-5%.

In future papers we shall discuss stability
against low-n MHD modes, finite-Larmor-radius
modifications of the ballooning modes, and parti-
cle orbit-confinement properties.
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