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A phenomenological model of dendritic solidification incorporating interfacial kinetics,
crystalline anisotropy, and a local approximation for the dynamics of the thermal diffu-
sion field is proposed. The preliminary results are in qualitative agreement with natural

dendritelike pattern formation.

PACS numbers: 05.70.Ln, 61.50.Cj, 68.70.+w, 81.30.Fb

The formation of complex spatial patterns in
nature has long been a source of challenging prob-
lems for the theorist."’? A familiar example
where this occurs is the snowflake; and recently
attention has focused on the mechanisms of wave-
length selection in a variety of other systems far
from equilibrium exhibiting periodic spatial struc-
tures, including hydrodynamic instabilities in
fluids,® electrohydrodynamic instabilities of ne-
matic liquid crystals,* cellular flame fronts,’
autocatalytic chemical reactions,® and directional
solidification.>”” These systems possess families
of linearly stable stationary states of different
periodicities; yet in practice a unique state is
reproducibly selected, for a large class of initial
conditions. Here we will be concerned with den-
dritic solidification, an example of propagating
pattern selection®® where a localized perturba-
tion of an initially homogeneous but unstable state
grows at a unique velocity, forming a stable peri-
odic state in its wake. The crucial questions are:
What is the periodicity of the stable state, and
what is the velocity of the propagating front? A
selection criterion which is consistent with ob-
servation is that the system somehow chooses
the state of marginal stability.!® This has not yet
been given a firm basis in theory, partly because
of the lack of models which are sufficiently com-
plex to retain the essential features, yet simple
enough to be mathematically and computationally
tractable. The purpose of this Letter is to pre-
sent a new approach to interfacial pattern forma-
tion which promises to be applicable not just in
the particular example of dendritic solidification,
where our preliminary results seem qualitatively
to reproduce observations, but also in other situa-
tions in physics, chemistry, and biology. Our
new approach permits us to explore, in a way
that has not previously been possible for this
class of free-boundary problems, the fully non-
linear behavior that leads to pattern formation.

The salient features of dendritic solidification
are as follows. We consider a liquid of heat capa-
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city C at temperature T . below the equilibrium
melting temperature T, of its solid, in contact
with a growing solidification front. In the local-
equilibrium approximation, the temperature of a
flat interface is Ty, but because of the work per-
formed against surface tension, a curved inter-
face has a temperature lower by an amount pro-
portional to the local curvature. Newly solidify-
ing material at the interface generates latent
heat L, which is conducted away from the inter-
face by thermal diffusion (we neglect fluid flow).
This process is facilitated by a large interfacial
area in contact with the liquid and a large ther-
mal gradient at the interface, both of which may
be achieved by the interface developing protru-
sions extending into the liquid. The surface ten-
sion acts as a stabilizing mechanism preventing
the formation of deformations on an arbitrarily
small length scale, by providing a coupling be-
tween the temperature of the interface and the
curvature of the deformation. As first shown by
Mullins and Sekerka,'! this unstable competition
between the thermal diffusion and the surface ten-
sion is the underlying mechanism for dendritic
growth. The other ingredient essential for the
beautiful, regular shapes observed in dendrites
is the crystalline anisotropy. Apart from provid-
ing the (e.g.) sixfold symmetry seen in snowflakes
it may function either as a mechanism channeling
the growth of instabilities along crystallographi-
cally preferred directions, or as a triggering
mechanism for instabilities. Without it, it is like-
ly that the growing dendrite would follow a crook-
ed path rather than propagating along a single di-
rection, giving rise to structures similar to
those observed in diffusion-limited aggregation.!?
The effects of crystalline anisotropy arise in part
through the kinetics of molecular attachment, an
intrinsically nonequilibrium process; its inclu-
sion in a model of dendritic solidification marks
a departure from the usual assumption of local
equilibrium.

The model described above, including the com-

© 1983 The American Physical Society



VOLUME 51, NUMBER 21

PHYSICAL REVIEW LETTERS

21 NOVEMBER 1983

plete dynamics of the thermal diffusion field, de-
fines a highly nontrivial free-boundary problem
(FBP) which has so far resisted even direct nu-
merical simulation except in relatively simple
special cases. Our alternative approach present-
ed below is to derive a boundary-layer model
(BLM) for the dynamics of the interface rather
than that of the diffusion field, but to take into ac-
count in a simple way the basic physical features
described above. We find that models which ne-
glect any of the above ingredients are unable to
give results even qualitatively similar to those
observed in dendritic solidification. In particular,
the interplay between the interface motion and
the diffusion field is necessary to reproduce the
Mullins-Sekerka instability, and we find*® that
models where the dynamics is solely determined
by the local curvature!*™'% are inadequate.

The essence of our model is the boundary-layer
approximation. That is, we visualize diffusion
as occurring within a boundary layer at the solidi-
fication front, which is thin compared to the local
radius of curvature. For the simple case of a
crystal growing in two dimensions, this replaces
the full diffusion problem by one-dimensional dif-
fusion along the interface. Diffusion normal to
the interface is accounted for by variations of
the thickness of the boundary layer, {, which
satisfies its own dynamical equation. It is more
convenient and intuitive to consider, instead of /,
the heat content per unit length of the interface

h=ugl, )

given in terms of the dimensionless temperature
of the interface

ug=A ~d,K(s)-BO)V,, @)

where K (s) is the curvature of the interface, d,

is a capillary length, and A =(T'y, = T'..)/(L/C).

V, is the velocity of the interface along its out-
ward normal and 8(8) is a function of the angle be-
tween the normal to the interface and a fixed di-
rection in space, chosen such that growth is rela-
tively enhanced in crystallographically favored
directions. The term —BV, accounts for the crys-
talline anisotropy and introduces the constraint
that the normal velocity is proportional to the
driving force of solidification, a crude nonequilib-
rium condition. With neglect of thermal diffusion
in the solid, the rate at which liquid solidifies is
the heat current entering the boundary layer from
the interface. Thus

Vao==Douy/on=Duy/l, (3)

where D is the thermal diffusion coefficient. The
equation of motion for %, following a point on the
interface as it moves along its outward normal,
is a statement of heat balance in the boundary
layer:

%L—=V"(1—us)+0 :—sl%%—KV,,h. @)
The first term is the latent heat entering the
boundary layer, the factor 1 —u being the frac-
tion not retained by the new layer of solid formed
from the liquid. The second term is just the
lateral diffusion along the boundary layer. The
final term is of purely geometric origin and
arises from the change in the differential arc
length as the interface grows. The phenomeno-
logical Eq. (4) is supplemented by the exact kine-
matic equations of the interface

dK/dt = - (K® +9%/8s®)V,,,
as/at =/ "as'kv,,

(5a)
(5b)

where, as in (4), time derivatives refer to varia-
tions along the outward normal. Equations (1)-(5)
completely specify the BLM.

We have been able to verify analytically that
the BLM accurately reproduces special solutions
of the conventional free-boundary problem and
that for A ~ 1 the boundary layer is indeed thin
compared to the local radius of curvature.!® In
addition, the limit of vanishing capillary length
yields a family of linearly unstable parabolic
needle-crystal solutions,'” as found by Ivantsov'®
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FIG. 1. Evolution of a dendritelike structure in the

BLM with anisotropy. The full lines represent the
interface at the times 10, 60, 111, 186, and 240.
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FIG. 2. Evolution of a dendritelike structure, at
times (from bottom to top) 10, 60, 111, 186, and 240
plotted in (s,K) space. Each successive curve has
been shifted by 0.8 from the previous one.

for the FBP. What is new, however, is that the

BLM is sufficiently tractable that we can demon-
strate that these solutions do not survive the in-

clusion of surface tension.'® It is quite possible

that this occurs in the FBP too.

Finally we present our preliminary numerical
results. Starting from a parabola with the initial
value of %(s,?) being given by the Ivantsov solu-
tion of Eqs. (1)=(5), we find that with B =0 the
model does not generate dendritic structures
for A in the range 0—1. Our results,'® with the
inclusion of crystalline anisotropy, are shown in
Fig. 1, where fourfold anisotropy was imposed
[B =0.1(1 - cos49)] and A =0.9. Full details of
both the analytic and the numerical results will
be presented elsewhere. We verified that, at the
last time shown, both the tip velocity and the tip
radius reached a steady state. In Fig. 1, the for-
mation of side branches in the wake of the moving
tip is clearly visible, and in (s,K) space (Fig. 2)
we see behind the tip the evolution of an increas-
ingly complex structure. The pattern which
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emerges is similar to that seen during the early
growth stages of real dendrites.
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