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Dynamics of Interfacial Pattern Formation
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A phenomenological model of dendritic solidification incorporating interfacial kinetics,
crystalline anisotropy, and a local approximation for the dynamics of the thermal diffu-
sion field is proposed. The preliminary results are in qualitative agreement with natural
dendritelike pattern formation.

PACS numbers; 05.70.Ln, 61.50.Cj, 68.70.+w, 81.30.Fb

The formation of complex spatial patterns in
nature has long been a source of challenging prob-
lems for the theorist. " A familiar example
where this occurs is the snowflake; and recently
attention has focused on the mechanisms of wave-
length selection in a variety of other systems far
from equilibrium exhibiting periodic spatial struc-
tures, including hydrodynamic instabilities in
fluids, electrohydrodynamic instabilities of ne-
matic liquid crystals, ' cellular flame fronts, '
autocatalytic chemical reactions, ' and directional
solidification. " These systems possess families
of linearly stable stationary states of different
periodicities; yet in practice a unique state is
reproducibly selected, for a large class of initial
conditions. Here we will be concerned with den-
dritic solidification, an example of propagating
pattern selection" where a localized perturba-
tion of an initially homogeneous but unstable state
grows at a unique velocity, forming a stable peri-
odic state in its wake. The crucial questions are:
What is the periodicity of the stable state, and
what is the velocity of the propagating front~ A

selection criterion which is consistent with ob-
servation is that the system somehow chooses
the state of marginal stability. " This has not yet
been given a firm basis in theory, partly because
of the lack of models which are sufficiently com-
plex to retain the essential features, yet simple
enough to be mathematically and computationally
tractable. The purpose of this Letter is to pre-
sent a new approach to interfacial pattern forma-
tion which promises to be applicable not just in
the particular example of dendritic solidification,
where our preliminary results seem qualitatively
to reproduce observations, but also in other situa-
tions in physics, chemistry, and biology. Our
new approach permits us to explore, in a way
that has not previously been possible for this
class of free-boundary problems, the fully non-
linear behavior that leads to pattern formation.

The salient features of dendritic solidification
are as follows. We consider a liquid of heat capa-

city ~ at temperature T below the equilibrium
melting temperature T~ of its solid, in contact
with a growing solidification front. In the local-
equilibrium approximation, the temperature of a
flat interface is T„, but because of the work per-
formed against surface tension, a curved inter-
face has a temperature lower by an amount pro-
portional to the local curvature. Newly solidify-
ing material at the interface generates latent
heat L, which is conducted away from the inter-
face by thermal diffusion (we neglect fluid flow).
This process is facilitated by a large interfacial
area in contact with the liquid and a large ther-
mal gradient at the interface, both of which may
be achieved by the interface developing protru-
sions extending into the liquid. The surface ten-
sion acts as a stabilizing mechanism preventing
the formation of deformations on an arbitrarily
small length scale, by providing a coupling be-
tween the temperature of the interface and the
curvature of the deformation. As first shown by
Mullins and Sekerka, " this unstable competition
between the thermal diffusion and the surface ten-
sion is the underlying mechanism for dendritic
growth. The other ingredient essential for the
beautiful, regular shapes observed in dendrites
is the crystalline anisotropy. Apart from provid-
ing the (e.g.) sixfold symmetry seen in snowf lakes
it may function either as a mechanism channeling
the growth of instabilities along crystallographi-
cally preferred directions, or as a triggering
mechanism for instabilities. Without it, it is like-
ly that the growing dendrite would follow a crook-
ed path rather than propagating along a single di-
rection, giving rise to structures similar to
those observed in diffusion-limited aggregation. "
The effects of crystalline anisotropy arise in part
through the kinetics of molecular attachment, an
intrinsically nonequilibrium process; its inclu-
sion in a model of dendritic solidification marks
a departure from the usual assumption of local
equilibrium.

The model described above, including the com-
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emerges is similar to that seen during the early
growth stages of real dendrites.
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FIG. 2. Evolution of a dendritelike structure, at
times (from bottom to top) 10, 60, 111, 186, and 240
plotted in (s,&) space. Each successive curve has
been shifted by 0.8 from the previous one.

for the FBP. What is new, however, is that the
BI M is sufficiently tractable that we can demon-
strate that these solutions do not survive the in-
clusion of surface tension. " It is quite possible
that this occurs in the FBP too.

Finally we present our preliminary numerical
results. Starting from a parabola with the initial
value of h(s, t) being given by the lvantsov solu-
tion of Eels. (1)-(5), we find that with p =0 the
model does not generate dendritic structures
for & in the range 0-1. Our results, "with the
inclusion of crystalline anisotropy, are shown in
Fig. 1, where fourfold anisotropy was imposed
[P =0.1(l —cos4&)j and & =0.9. Full details of
both the analytic and the numerical results will
be presented elsewhere. We verified that, at the
last time shown, both the tip velocity and the tip
radius reached a steady state. In Fig. 1, the for-
mation of side branches in the wake of the moving
tip is clearly visible, and in (s,K) space (Fig. 2)
we see behind the tip the evolution of an increas-
ingly complex structure. The pattern which
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