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The problem of two-dimensional localization in the presence of a magnetic field is re-
considered, The existence of extended electronic states is demonstrated by use of the
replica formalism and duality arguments. These states are analogs of 6 =7 vacua in four-
dimensional Yang-Mills theories, and occur at the center of each Landau band. The
present results complete the explanation of the integrally quantized Hall effect.
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Recently, there has been a great deal of excite-
ment about the two-dimensional electron gas in
the presence of a magnetic field. This was
sparked by the discovery of the quantized Hall
effect.’ This effect was predicted by Ando, Mat-
sumoto, and Uemura,? and later clarified by
. Laughlin® and Halperin,? on the basis of the re-
sponse of electronic states to the presence of
magnetic flux.

Their work, as well as related ideas of Thou-
less,® requires that even with the addition of im-
purity scattering, at least some of the electronic
wave functions remain extended. However, as
was argued by Abrahams efal.* and shown more
rigorously by Wegner and others,® the states of
a two-dimensional noninteracting electron gas
(the zero-temperature Anderson model) are all
strictly localized without a magnetic field. It is

z=(DQ [ DIDyexpL(,s,Q),

therefore extremely important to show the mech-
anism whereby “conventional”” localization breaks
down and extended states appear in such a field.
In this work, we propose an argument based on
topological excitations and ’t Hooft® duality to
demonstrate that extended wave functions do in-
deed exist, at least at certain special values of
the Fermi energy.

We begin by using the standard replica method
to study the Green’s functions of the Hamiltonian

H=(1/2m)(=iV +eA/c)? +V(r)
=1, 1" +V(r), (1)

where V(r) is a white-noise random potential with
variance g. Since H is Hermitian, we can intro-
duce complex Grassmann fields ¢*, ¢~ and carry
out the Gaussian average over V(r). This leads
to a generating functional of the form

@)

L=~ (1/20)3Q% +y L W)E +is,n =T, T1#16,,22 9, 0r) = iT,2(r)Q > 4,2 ),

where s, is (1,~1) and 7 is a positive infinitesimal. @,,**' is a Hermitian matrix residing in U(2n) with
replica indices a,b running from 1 ton and p = (+,—-). In order to study localization, we need to focus
on the critical fluctuations of the @ fields. In direct analogy with work on the Anderson model,® this is
done by studying the excitations around the mean-field solution. This leads’ to an effective nonlinear
o model with the Lagrangian

L(@)=-4%0,"Tr?,qQ 8*Q —0,,°Tr{[2,Q, 2,4, (3)

where ow" is determined by the underlying short-ranged theory and can be interpreted as the non-
critical contribution to the conductivity tensor. In its simplest form, namely in mean-field theory,
0,,° is discussed by Ando, Matsumoto, and Uemura.? § belongs to the symmetric space U(2n)/U(n)
® U(r) and may be parametrized as 7™'s, T, where T€U(2n).
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Field theories involving Lagrangians of unitary
o models have previously been suggested by sev-
eral authors® for the magnetic field problem.
However, their analyses overlooked the existence
of the second term involving o,,° in Eq. (3). In-
deed, this term is zero to all orders in perturba-
tion theory and therefore cannot effect the per-
turbative 8 function derived by Brezin, Hikami,
and Zinn-Justin.® In fact, this term is a topo-
logical invariant already noted in several related
o models,™ and is directly analogous to terms of
the form 6[d* TrF””I':”,, appearing in four-di-
mensional gauge theories.!' We will now proceed
to show that this term will drastically alter the
scaling behavior of the theory and thereby lead
to extended states.

The topological invariant characterized by the
expression

(O'xyo/8) fdzx TrQ[BxQ s ayQ]E 2711'(]0”0
describes the mapping of compactified two-di-
mensional space to the coset-space manifold.
For all n, this mapping is classified by the hom-
otopy group I, (U(2r)/U(r) ® U(n)) = Z, the set of
integers.’” This immediately implies that the
theory is only sensitive to 6= 270,,° mod27. It
may seem surprising that this topological struc-
ture is retained even when # goes to zero. This
can be understood by recognizing that U(2z)/Ux)
®U) is also SUR@n)/S(Ux) € U(r)), where we
have divided out the overall phase of 7. This
still leaves a relative phase between the two U(n)
subspaces, p=+, —, of SU(2x#). By a standard re-
sult of homotopy theory, I,(G/H)=II,(#), if G is
simply connected. This implies that'the relevant
classification may be alternatively described as
I1,(S(U(n)® U(n))) = Z. Because the Z arises as
a result of the U(1) piece, the replica index n
is irrelevant. Later, we will extend our bounda-
ry conditions to allow for nonintegral topological
charge and thereby construct the analogues of
’t Hooft’s twisted boundary conditions.®

To understand the significance of this extra
term, one must undertake a nonperturbative
analysis of the theory. One approximation, good
in relatively weak coupling, is to saturate the
functional integral with “instanton” configura-
tions.’® In our context, instantons are solutions
of the classical field equations with nonzero
topological charge. The best way to exhibit
these solutions is to use the parametrization of
MacFarlane,'* where

o=1-2mm", M=<’§VN>, (4)
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where K and N are n X n matrices which satisfy
(K'TK + 1)N2=1. It can be shown that the func-
tional form
k i

Kab(z =x+iy)=caébln ﬂ?'_

=1 £ 7€

is a k-instanton solution with topological charge
g =k and action 47k. It has a total of n(k+ 1)+ %
complex collective coordinates, which reduce at
n=0 to just k£, the instanton positions. These
solutions involve a nontrivial winding of the
gauge field A,*® =M T 3,M around the poles oc-
curring at z=e;. These solutions are embeddings
of the CP" [U(n)/U(n - 1)® U(n)] model instantons;
because only one column of the matrix is non-
trivial, these solutions survive in the zero-rep-
lica limit.

Generalizing the work of Gross,'® one can show'®
that these instantons make a nonperturbative
contribution to the g function of the form
ccos(6) exp(- 4n0,,°), where c involves a com-
plicated determinantal computation. At 6 =0,
this causes o,,, the true conductivity, to ap-
proach zero more rapidly than one would expect
on the basis of asymptotic freedom alone, and
hence enhances localization. As 6 approaches
7, the effect of these excitations is in exactly
the opposite direction. To the extent that one
can trust this crude approximation, the g function
would actually have an infrared-stable zero.!”
This would imply the existence of extended states
for values of the magnetic field and Fermi ener-
gy that give o,,° in this range.

Of course, the dilute-instanton gas argument
is rather heuristic. However, we can give a
better argument that as 6 goes from 0 to 27,
localization must break down somewhere and at
least one extended state must appear. To do
this, we use ’t Hooft’s idea® of applying a Z,
twist to the boundary conditions defining the
functional integral of the theory. Recall that a
mapping of compactified two-dimensional space
to the group manifold had to give rise to an in-
teger value of the topological charge. It can
easily be verified that this corresponds to a
relative phase rotation by 27. Motivated by the
ideas of Edwards and Thouless, '® we now con-
sider boundary conditions such that there is a
relative phase rotation of 7. Specifically, con-
sider the boundary conditions on the T field

T,L)=Tk+L,L),

T,0)=(-1*T(x +L,0),
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where 2=(0,1). A typical example of a field with
k=1is

e 0=exp( G exof 5 e )
where L is the size of the system and the Pauli
matrices 7,,7, act on the +, - indices. Note
that é behaves nontrivially as we traverse the
sample, explaining the lack of contradiction with
the original homotopy argument.

Now, define the free energy F(e,6) as the loga-
rithm of the Z, transform of ¢ “¥*+9) where F
is the free energy in the presence of the boundary
condition denoted by k:

expl-F(e,6)]
= 3 eikmerik@Zexp~F(k,60)].  (5)

kR=0,1

The term in the exponent proportional to £6/2
arises because the & =1 boundary conditions
above give rise to half-integral topological charge.
This definition makes sense because it can be
shown'® that in a Hamiltonian approach to this
quantum theory, the label ¢ can be affixed to
quantum states by studying their behavior under
gauge transformations that do not vanish at spa-
tial infinity. At 6~ 0, the standard renormaliza-
tion-group prediction of localization implies that
F(0,0) will differ from F (¢, 0) by terms of the
form e~ %/%, with £ the localization length. The
“duality” definition then requires that F(e ,0)
~ L/t. Another way of saying this is that the
system is very sensitive to the presence or ab-
sence of the “electric” twist e. Now, let us
study the role of larger values of 6. For trivial
boundary conditions, 6 =0 is the same as 6 =27.
However, in the presence of & twists, 6 has the
additional effect of shifting e to e + 6/27 [Eq. (5)]
(Refs. 19 and 20). Therefore, consider the object
F(-e,0)-F(0,0). Ato=0, it equals 1/¢; at 6
=27, it equals —1/¢. Clearly, continuity demands
that this function be zero somewhere in the range
0 <6 <27. The vanishing of the difference means
that at those particular values of 6, the system
becomes insensitive to e and, via duality, is in
fact sensitive to nonzero k. This then is a break-
down of localization.

Our argument for extended states is in some
sense similar to the ideas of Halperin, ? in that
it only concerns the effect on the system of a
complete cycle in 6 space, which affects con-
figurations that locally can almost always be
thought of as gauge transformations of trivial

ones, It leaves open the question of exactly where
the extended states appear. The simplest pos-
sibility, that only 6=7 is in a different phase,
would lead to the breakdown of localization at
exactly the values of the Fermi energy which
correspond to the center of the band for a given
magnetic field strength (o,,°=%ne?/k). That this
may indeed occur is suggested by analogous re-
sults in the large-n limit of CP" models, 2! and
would be consistent with similar ideas that arise
in other, less systematic, approaches to this
problem.?? However, we cannot at this point
rule out the possibility of a band of extended
states near =7,

In summary, we have shown that the presence
of 0,,° directly attributable to the magnetic field,
will cause extended states to appear at or near
the center of the Landau bands. These results
on the phase structure are consistent with the
general arguments of Refs. 2 and 3, and resolve
the localization paradox stated at the outset.
Using this field-theoretic formalism, one can
derive a full theory of the quantized Hall effect
which contains explicit demonstrations of the
Laughlin approach as well as the results con-
tained here., This will be presented elsewhere.'®
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