VoLUuME 51, NUMBER 20

PHYSICAL REVIEW LETTERS

14 NOVEMBER 1983

Monte Carlo Study of the Two-Dimensional Hubbard Model

J. E, Hirsch
Depariment of Physics, University of California, San Diego, La Jolla, California 92093
(Received 6 September 1983)

A two-dimensional model of interacting electrons on a lattice, the Hubbard
model, has been studied by means of a numerical simulation technique. Results
for the half-filled-band sector are presented for lattices of up to 6 x 6 spatial
sites, as a function of temperature and electron-electron repulsion U, In the
ground state, the system is found to exhibit antiferromagnetic long-range order
for all values of U, although greatly reduced from the mean-field—theory pre-

dictions.
PACS numbers: 75.10.Lp, 71.10.+x

Recently, various techniques have been devel-
oped to study interacting quantum systems on a
lattice with use of Monte Carlo (MC) methods,!3
These techniques open up the possibility of study-
ing in a nonperturbative way previously intract-
able many-electron problems where both features
of band structure and interactions play an essen-
tial role. This approach should be useful in bridg-
ing the gap between localized and itinerant-elec-
tron descriptions of magnetism in narrow-band
systems.? Here, I begin a study of these ques-
tions by considering the two-dimensional half-
filled Hubbard model on a square lattice.

The Hubbard Hamiltonian® is a simple model 1

H=
ivisa

with n;4= ciaTc,-a the fermion occupation number
for spin o =14, ¥ at site ¢, and K;;=-¢ if {,j are
nearest neighbors on a square lattice, and zero
otherwise. u=U/2 for the half-filled-band case.
The single-particle eigenstates for the case U
=0 have energy

e(k,, k) =-2t(cosk, +cosk,).
The bandwidth is W=8¢, and I will use units so |
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for interacting electrons on a lattice: It describes
a single band formed by overlapping s orbitals,
with a repulsive interaction between electrons of
opposite spin at the same site. It is thought to
be able to describe many of the features of nar-
row-band magnetism.®™® In one dimension, it has
been solved exactly with use of Bethe Ansatz
techniques.® Furthermore, finite-lattice exact®
and MC ! calculations have provided information
on thermodynamic properties and correlation
functions. In more than one dimension, essential-
ly no exact calculations exist although a variety
of approximate studies have been performed.°~®
The model is defined by the Hamiltonian

(1)

that t=1.

I write a functional integral formulation for the
partition function, using a transformation recent-
ly proposed to eliminate the fermion-fermion
interaction, introducing auxiliary Ising variables
0,(1)=+1, The procedure is similar to the usual
Hubbard-Stratonovich transformation and is dis-
cussed in detail elsewhere.'? The result is

(2)

(3)

The error in obtaining Eq. (2) is O(AT?*U). I have used ATU=0.5, which should give systematic errors

of a few percent at most.*?

Taking the trace over fermion degrees of freedom in Eq. (2) yields?”

Z=Tr{o,n1I1,det[1+B()B,_,(a) -+ B,(a)]=Tr,det(0,)det(0,),

B (o) =exp(-ATK) exp| V(o) ],
[exp Vl(a)Jij =0y, exp[)\a(f,-(T, ),
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(K);;=K;;, and a=+1. The equal-time Green’s function is given by
G;; = {CioC ;0N =Tr{c;0c 0 ) det(0,)det(0,)/Z, (5a)
<CiocCJ(x > (1 +BL(a)BL_1(a) .o .Bl(a) >i‘j ’ (5b)

and averages over more products of fermion operators are obtained by performing Wick’s contractions,
i.e.,

<cilaTci2aci3a’TCi4ot’>= <Ci1aTC i2a> <ci3a’Tc i4o¢’>+ Opar <Ci1aTC i4a> <Ci2aci3aT>- (6)

Similar relations hold for time-dependent corre- |

lation functions. In addition, there exists a sim- magnetic order is an open question. Hartree-

ple proportionality relation between correlation Fock theory predicts antiferromagnetic long-
functions of the Ising spins and fermion spin-spin range order for any value of U and all spatial
correlation functions,? dimensionalities (d). In d=1, however, it is

I use the heat-bath algorithm to perform a known that quantum fluctuations destroy the long-
Monte Carlo calculation of the trace over Ising range order for all values of U, I have investi-
spins, using the product of fermion determinants gated this question in d =2 by studying the spin-
as the Boltzmann weight. For the half-filled~- spin correlation function:
band case on bipartite lattices, the following rela- S = Exeik By y =1 gy =ng) - (8)

tion holds as a result of particle-hole symmetry:
For k=(m, m), this quantity is found to grow as the

det(0 ) =det(0 Jexp| - ?z o (m)], ™ temperature is lowered and the lattice size in-
so that the product of determinants is positive def- creased. To extrapolate the size dependence, it
inite, For the non-half-filled-band case, I have is essential to consider finite lattices that can
numerical evidence that the product of determi- accommodate the Néel state using periodic bound-

nants can become negative at low temperatures,
complicating the situation somewhat.

To compute the change in the fermion deter- 1
minant for a change in an Ising spin, I use the m -
algorithm introduced by Blankenbecler, Scalapino, e s
and Sugar,? which updates the fermion Green’s oor 4 R
function at each step exactly. It involves N® oper-
ations per update, with N the number of spatial
sites. In addition, after sweeping through ten
to fifteen time slices the Green’s function has to
be recomputed because of degradation due to
rounding errors. For large lattices (>4 x4), it is
convenient to do a checkerboard breakup® of the
kinetic-energy operator in Eq. (4b), so that the
resulting matrices are sparse.”® Because of the
relation (7), I only need to work with the Green’s
function for one spin. A sweep through a 6 X6
x32 lattice (the largest size studied) took ap-

proximately 70 sec on a VAX 11/750 computer. 7% 126 Ui /10 1/8

A typical simulation involved 200 warmup sweeps L/N

and 1000 measurement sweeps. I have compared FIG. 1. Extrapolation of the ground-state antifer-
results of my simulations with exact results by romagnetic long-range order. The U=« results are
Shibal® for a six-site chain and found good agree- taken from Ref, 14. The N =8 results were not used
ment. in the extrapolation for y=2 and =4, For N=10,

antiperiodic boundary conditions were used, The inset

At finite temperatures, the two-dimensional shows the staggered magnetization » vs U (here and

Hubbard model is not expec’ted to have magnetic in the following, the full line through the MC points is
order because of the Mermin-Wagner theorem. to guide the eye) and the Hartree-Fock predictions
At T=0, however, the existence of long-range (dashed line).
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FIG. 2. Ground-state energy vs U for d=2 (MC re-
sults) and d=1 (exact, from Ref. 8). The dashed lines
are Hartree-Fock results.

ary conditions, as pointed out by Oitmaa and
Betts.!* Such lattices with square cells in d=2
can be constructed for any number of sites N
satisfying N =72 +s%, with » and s integers and
r+s even, Figure 1 shows S(m, m)/N at tempera-
tures 8=0.75VN plotted versus 1/N for N =8, 10,
16, 26, and 36. The Oitmaa and Betts ground-
state results’® for the antiferromagnetic Heisen-
berg model, which is the U — <« limit of the Hub-
bard model in the half-filled sector, are also
shown. My results fit a linear dependence well
except for N=8, and suggest that the model has
long-range antiferromagnetic order in the ground
state for all values of U, The inset shows the
ground-state staggered magnetization versus U,
which is greatly reduced from the predictions of
Hartree-Fock theory as a result of quantum fluc-
tuations.

Figure 2 shows the extrapolated ground-state
energy versus U. Hartree-Fock theory yields a
reasonable upper bound, Exact and Hartree-
Fock results for d=1 are also shown for com-
parison,

Figure 3 shows the temperature dependence of
the local magnetic moment, defined by

<SZ>:<%(ni1—ni{)2>, (9)

on a 6 X6 lattice. This quantity was found to be
very insensitive to the lattice size. It takes the
value £ in the noninteracting limit, and £ in the
U= limit where the electrons are completely
localized. For any finite U the local moment
takes the noninteracting value at high tempera-
tures, and increases gradually as T is lowered.
Note that the behavior is smooth and very similar
to the one-dimensional case. The two-dimension-
al system has a smaller magnetic moment for
a given value of the Coulomb interaction, because
of the fact that the electrons have more paths to
delocalize. -

Figure 4 shows the magnetic susceptibility ver-
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FIG. 3. Local magnetic moment vs temperature on
a 6 x 6 two-dimensional lattice and a six-site one-
dimensional lattice.

sus temperature on a 6 X6 lattice. From com-
parison with results for smaller lattices, I ex-
pect finite-size effects to start becoming notice-
able around 7'~ 0.75. In the noninteracting case,
x diverges logarithmically as 7T — 0 because of a
logarithmic singularity in the density of states at
the Fermi surface. It is not clear whether this
behavior persists as the interaction is turned on.
The interaction enhances the magnetic suscepti-
bility, although less than in the d=1 case (not
shown). Again the behavior is smooth as a func-
tion of temperature.

Because of the nested Fermi surface, the sys-
tem considered here is expected to be insulating
for all values of U. Results for the imaginary
time dependence of various correlation functions
appear to confirm this prediction. The extrac-
tion of the value of the gap is subtle because the
results do not fit a simple mean-field behavior,
and will be discussed elsewhere.

In summary, I have reported results of Monte
Carlo simulations of the two-dimensional half -
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FIG. 4. Magnetic susceptibility vs temperature on
a 6 x 6 lattice, The dashed line is the 7 =0 suscepti-
bility for an infinite lattice.
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filled Hubbard model. This is the first Monte
Carlo study of an electronic lattice model of
interest to condensed matter physics in more
than one dimension. I conclude that the system
is an antiferromagnetic insulator in the ground
state as predicted by mean-field theory, although
the staggered magnetization is greatly reduced
from the mean-field prediction. At finite tem-
peratures, the behavior is qualitatively similar
to the one-dimensional case: The system is a
paramagnetic insulator, and the magnetic sus-
ceptibility and local moment increase smoothly
as the temperature is decreased. It will be of
interest to consider the model with further than
nearest-neighbor hopping, so that the Fermi sur-
face is nonnested, as well as the non-half-filled—
band sectors where ferromagnetism could possi-
bly occur. In addition, calculations for small
lattices in three dimensions (4 X4 X 4) appear to
be quite feasible.

This work was supported by the National Sci-
ence Foundation under Grant No. DMR-82-17881.
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