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Structural Phase Diagrams for the Surface of a Solid:
A Total-Energy, Renormalization-Group Approach

Total-energy calculations based on microscopic electronic structure are com-
bined with position-space renormalization-group calculations to predict the
structural phase transitions of the Si(100) surface as a function of temperature.
It is found that two distinct families of reconstructed geometries can exist on the
surface, with independent phase transitions occurring within each. Two critical
temperatures representing order-disorder transitions are calculated.

PACS numbers: 68.20.+t, 71.45.Nt

We report a first realistic study of the struc-
tural phase transitions of a semiconductor sur-
face at finite temperatures. Recent advances in
the total-energy-minimization method' ' have
made it possible to determine the structure of
semiconductor surfaces at zero temperature from
first principles. The precision of state-of-the-
art energy-minimization methods is such that
bulk phonon frequencies are reproduced within
1(Po and relaxed or reconstructed surface geom-
etries can be obtained consistent with existing ex-
perimental data. This indicates that the achieved
accuracy in the calculation of total-energy differ-
ences is better than 10 ' eV, a surprising num-
ber even in the current standard of solid-state
computations.

All calculations, until now, have been restrict-
ed to zero-temperature geometries because of
the lack of a tractable scheme to incorporate the
entropy contribution at finite temperatures. How-

ever, if one were able to combine the energy-
minimization approach with the renormalization-
group technique' " (which has had great success
in phase-transition studies for two-dimensional
systems) the behavior of semiconductor surfaces
at finite temperatures could be predicted quanti-
tatively from first principles. Using a series of
approximations described below, we have suc-
ceeded in developing such a scheme and applied
it to the Si(100) surface, resolving important
questions regarding the structure ot' the Si(100)
surface. For example, we show that the (2X 1)
structure is not the ground state of the Si(100)
surface and a higher-order reconstruction should
occur on the surface. We predict the disappear-
ance of these higher-order spots roughly above
room temperature due to an order-disorder tran-
sition. We also obtain a phase diagram for the
Si(100) surface which ca.n be used simultaneously
for systems belonging to the same universality
class such as Ge(100) and diamond (100).

our basic approximations are summarized as
follows. (1) Use of the asymmetric dimer model:
Pairs of atoms at the surface relax by dimeriz-
ing into one of two possible asymmetric config-
urations' (Fig. 1, inset). Different reconstruc-
tions result from different arrangements of asym-
metric dimers which are the building blocks of
the surface in this model. (2) Use of the tight-
binding energy-minimization method: This was
first proposed by Chadi. ' We have included the
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FIG. 1. Reconstruction geometries of the Si(100)
surface for (a) "2 x 1" and (b) "c(2 x 2)" families.
Coupling constants for each family are indicated. Side
views of the asymmetric dimers are shown in the inset.
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excited s orbital in the basis set to improve the
accuracy of the calculation. ' (3) Mapping onto
the spin-one-half Ising Hamiltonian: The two
possible orientations of the asymmetric dimer
are represented by the two possible states of a
spin, and the energy differences between differ-
ent reconstructions a,re translated into a set of
interaction energies in an effective spin Hamilto-
nian. (4) Use of the standard position-space re-
normalization-group method" to determine the
phase diagrams.

The first and second approximations involve
rather controversial issues. For example, the
atomic positions on the Si(100) surface are not
precisely known. Nevertheless, there is ample
experimental support" for the asymmetric dimer
model and it is the best choice available at pres-
ent. Next, it is difficult to estimate the precision
of the energy differences between different re-
constructions obtained from the tight-binding cal-
culations. It is known that the accuracy of the
pseudopotential energy calculation is better than
10 mev, but pseudopotential calculations for re-
constructed geometries greater than (2x 1) or
c(2x 2) are intractable at the present. After ex-
tensive tests and crosschecks with pseudopoten-
tial calculations for simpler geometries [(2x 1)
and c(2x 2) structures], we find that the accuracy
of the tight-binding energy calculations can be
made comparable to that of the pseudopotential
method when excited s orbitals are properly in-
cluded in the basis set. With this extra orbital,
we reproduce the energy difference between the
symmetric and the asymmetric dimer (0.2 eV)
to within 10 meV and obtain the (2x 1) structure
lower in energy than the c(2x 2) structure, in
agreement with both pseudopotential calculations

~

and experimental observations. [Without this im-
provement over Chadi's original scheme, (2x 1)
would have a, higher energy than c(2x 2).j

The third approximation is the most natural and
simplest to make. A remaining question relates
to the number of neighbor interactions that must
be included in the effective spin Hamiltonian. In

practice, this number is uniquely determined by
the number of different reconstruction geome-
tries that need to be compared. Experimentally,
higher than quarter-order spots are never ob-
served. "" Thus, the number of possible recon-
structions deserving analysis is small (4-5) and
can be accommodated by including up to the next-
nearest-neighbor interactions in each dimension.

Regarding the fourth approximation, this class
of spin systems has been studied extensively and
the description of the phase transitions using the
renormalization-group approach can be made as
accurate as needed. ""

Let us now turn to the specific problem at hand.
Various diffraction experiments' at room tem-
perature indicate that (2x 1) is the basic recon-
struction unit for the Si(100) surface. Neverthe-
less, higher-order spots (up to quarter order)
have been seen and, occasionally, a diffuse back-
ground as well as streaking is also observed.
Whether the ground-state reconstruction of the
Si(100) surface is (2x 1) or higher has not been
resolved experimentally. A family of simple re-
construction geometries with a (2x 1) backbone
is shown in Fig. 1(a). The spins indicate the two
possible asymmetric-dimer orientations. This
set of structures will henceforth be called the
"2x 1" family.

The effective "spin" Hamiltonian" for this fam-
ily may be written as

—K —VQS~~ S~ ~+~+HQS)~ 8;+~ q DQS; S~~+g ~~g. + UPS;~S; ~E+2QS S;~~~+~S)+~ ~ S~+1~~1~

where all interactions up to twice the surface
atom spacing are included and illustrated in Fig.
1(a). The couplings U and F contribute equally
to the ground-state energies considered here and
are taken to be zero. The remaining coupling
constants are extracted from the total-energy dif-
ferences of the individual structures. The total
energies at T = 0 are calculated with use of the
aforementioned tight-binding approach for infinite
slabs of Si with twelve-layer thickness. A posi-
tion-space renormalization-group calculation"
is then performed, with use of a finite cluster of
four cells, each containing five sites. The corre-
sponding flows are in the parameter space of V,
H, D, and I only.

! There is another important family of recon-
struction geometries based on a c(2x 2) backbone.
This family is shown schematically in Fig. 1(b).
The interaction parameters for the spin Hamilto-
nian of this "c(2x 2)" family are also illustrated
in this figure. These coupling constants are
again extracted from total-energy calculations.
The coupling I ' is taken to be zero for simplicity.

The results of total energies and coupling con-
stants for both families are given in Table I.
Several interesting features emerge. In the "2
x 1" family the total energies for the p(2x 2) and
c(4x 2) structures are very similar. Since the
error in the theoretical calculations is of the or-
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TABLE I. Total energies for various reconstruction
geometries with respect to the (2 x 1) surface and the

coupling constants deduced from them.
a)

2x1 Z (meV) re&{2 x 2)rr E {meV)

(2x1)
p(2 x 2)
~(4 x 2)
(4x1)

D

0
—36
—31

36
10

—26
4

g(2 x 2)
p(2 x 2)
p(4x 2)

(4x 1)
H'
V'

67
158
135
131
11

2
23 aramagnet

F: fer r o magnetic
AF anti ferrpmagnetjc

LAF: layered antiferromagnetic

der of a few millielectronvolts, it is impossible
to tell which structure will actually be realized
at very low T. From a practical point of view,
surface-preparation conditions dictate the struc-
ture to be realized. A typical example is the
cleaved Si(111) surface which exhibits a (2x 1)
structure although the (7x 7) structure is believed
to be slightly lower in energy. In the "c(2x2)"
family the energy difference between structures
is much larger. The corresponding phase transi-
tion in this family could be predicted with certain-
ty. However, since the c(2x2) structure is sig-
nificantly higher in energy than the p (2x 2) or the
c(4x2) structure in the (2x 1) family, it is prob-
ably not realized under normal conditions. Exis-
tence of steps on the surface further hampers the
realization of the c(2x 2) structure which usually
has more dangling bonds across the step and re-
quires more energy to be created. If both (2x 1)
and c(2x 2) families happen to be created on the
surface, the domain wall between these two struc-
tures is going to be very stable. Breaking or dis-
placing the wall costs a "huge" amount of energy
(-1.7 eV per dimer). Thus each domain will be-
have independently, with different phase transi-
tions occurring in each.

The phase diagram for each family is shown in
Figs. 2(a) and 2(b), respectively. This is a re
duced parameter space obtained by dividing each
coupling constant by kT (e.g. , d=D/kT, k =H/, k-T,
etc.). The cross sections of constant d are shown
to help visualize the phase space. All phase
boundaries shown in the figure are second order.
As T increases one moves toward the origin on

a straight line in parameter space as indicated
in the figure.

For the "2x 1"family, this diagram shows that
a second-order transition occurs between lay-
ered-antiferromagnetic p (2x 2) and paramagnetic
(disordered) phases at roughly 250 K. As we
have already mentioned, however, our theoreti-
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FIG. 2, Phase diagrams in reduced parameter space
for (a) "2x 1" and (b) "c(2x2)" families. The straight
lines passing through the origin correspond to the
particular set of interaction constants of the Si(100)
system at varying temperatures as explairied in the
text. In (a) F is the (2x1), LAF is the p(2x2), and
AF is the c(4 x 2) structure. In (b) F is the c{2x 2)
and LAF is the p(2 x 4) structure. In each case, P
denotes a disordered configuration of dimers.

cal calculations are not accurate enough to dis-
tinguish between the p(2x 2) and c(4x 2) geome-
tries. Changes in the energy of a few millelec-
tronvolts can turn the c(4x 2) structure into the
ground state with a similar transition tempera-
ture to the paramagnetic phase. In any case,
our calculations predict that the pure 2x 1 geome-
try. is not the ground state and that higher-order
reconstructions of either p(2x 2) or c(4x 2) should
be present at low temperatures.

For the "c(2x 2)" family, the situation is much
clearer. Figure 2(b) predicts a second-order
transition between ferromagnetic c(2x 2) and
paramagnetic (disordered) phases at - 800 K. It
is tempting to suggest that the large changes in
desorption rates recently observed in surface
ionization experiments on Si(100) around 980 K

may be related to this phase transition. " Since
the results are still preliminary, however, fur-
ther experiments and careful interpretations are
necessary to draw definite conclusions.

Determination of ordered structures and phase
diagrams leads to the issues of critical phenome-
na, encapsulated in the critical exponent values.
The second-order transitions here between the
ferromagnetic and antiferromagnetic phase and
the disordered phase are in the two-dimensional
Ising universality class. Accordingly, the corre-
lation length exponent v and the order-parameter
exponent P have the values of 1 and —,', and may
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be observable from a careful analysis of diffrac-
tion spot widths and intensities, respectively.

In conclusion, at very low T, the "(2x I)" fam-
ily will most likely give rise to p(2x 2) or c(4x 2)
higher-order spots. Around room temperature
these higher-order spots will be lost because of
the transition to the disordered phase. The (2x 1)
spots will persist, however, since the huge di-
merization energy of 1.7 eV assures the integrity
of the dimers. If a domain of the c(2x 2) struc-
ture is created, it will undergo a phase transi-
tion to the paramagnetic phase at very high tern-
peratures.
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