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Formation and Decay of a Localized Region of Higlt Excitation in Heavy-lon- Induced Reactions
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Proton-proton correlations were measured in 0-induced reactions on Au at
400 MeV. Measurements at both small and large proton relative momenta indicate
that a significant fraction of the correlated protons are emitted from a spatially
localized region of high excitation.

PACS numbers: 25.70.Gh

Nonequilibrium particle emission in interme-
diate-energy nuclear collisions is a phenomenon
whose description presents a clear challenge to
our current understanding of nuclear reactions.
Of the many differing theoretical approaches, the
concept of a spatially localized region of high ex-
citation ( 'hot spot")' ' has received support from
the comparisons of inclusive light-particle spec-
tra and multiplicities with statistical predic-
tions."While these comparisons test the ther-
mal assumptions of the hot-spot picture, until
now the particular aspect of spatial localization
has lacked direct experimental verification. In
this Letter we report the first results from two-
proton correlation measurements that provide
evidence for particle emission from a spatially
localized region of high excitation in qualitive
agreement with the concept of a hot spot.

The experiment was performed at the Holifield
Heavy-Ion Research Facility. A gold target of
9.7 mg/cm' was bombarded with "0 ions of 400
MeV incident energy. A schematic drawing of
the experimental setup is given in Fig. 1. Single
and coincident protons were detected with thir-
teen &E-E telescopes consisting of silicon &E
and NaI E detectors. Small-angle correlations
were measured with six telescopes with individ-
ual solid angles of 0.76 msr. The detectors were
mounted in a closely packed hexagonal array that
was centered at the scattering angle of 15'. The
angular resolution and the angular separation
between adjacent telescopes were 1.6 and 5.1,
respectively. Large-angle correlations were
measured with seven telescopes of solid angles

between 13 and 14 msr. Three of these tele-
scopes were mounted in the plane of the small-
angle hodoscope (4' = 0 ) at the scattering angles
of 0 = 40', 70', and 130', where ~ and 4' denote
the polar and azimuthal angles measured with
respect to the beam axis. The remaining four
telescopes were positioned at the polar angles
of L9 = 40', 70', 130', and 160'; their azimuthal
angle was varied between 50' and 180'. Absolute
cross sections, accurate to 10'%%uo, were obtained
from the integrated beam current, the target
thickness, and the solid angles of the telescopes.
Energy calibrations accurate to 3% were obtained
by measuring the energies of recoil protons back-
scattered from a Mylar target by a 200-MeV "0
beam.

Consistent with previous observations, the
singles light-particle cross sections are rather

FIG. 1. Schematic drawing of the experimental setup.
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FlG. 3. The correlation function 1+ p(&P), gated
on relative momentum intervals of 15-25 and 50—80
MeV/c, plotted as a function of the sum energy of the
two protons. The errors are purely statistical. gee
the text for a discussion of the solid line.

FIG. 4. The ratio of the energy-integrated coincidence
cross section for g@=180' to that of &4=0' plotted as
a function of the midpoint of the integration interval
of 20 MeV width. The errors are purely statistical.
See text for a discussion of the curves.

density of normal or twice nuclear matter density
(0.015 fm '), a maximum number of 25 or 50 par-
ticipating nucleons is estimated, respectively.

In Fig. 3, the correlation function correspond-
ing to &P = 50-80 MeV/c decreases slightly for
increasing energy of the coincident protons, This
decrease may be understood in terms of the phase-
space constraints imposed by energy and momen-
tum conservation. In order to assess these ef-
fects, we assume for simplicity that only a sub-
set of nucleons have interacted strongly during
the time in which the two protons are emitted.
These protons are assumed to be emitted iso-
tropically with a Maxwell-Boltzmann distribu-
tion in the rest frame of this subset of nucleons.
Following the emission of the first proton the
subset recoils with a velocity defined by mo-
mentum conservation and the number of nucleons
in the source, A, .' This moving-source parame-
terization provides an adequate description of
the inclusive data' and is consistent with the
overall features of the coincidence data. ' The
solid line in Fig. 3 shows the correlation expected
for a subset with apparent temperature of 7.1
MeV and average velocity of 0.087c consisting of
A, =40 nucleons.

The phase-space constraints imposed by mo-
mentum conservation may be used to assess the
number of participating nucleons. Since the sin-
gles and eoincidenee cross sections depend strong-
ly on the polar emission angle, these phase-space
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constraints are best demonstrated by fixing the
polar angles of the coincident protons and ex-
amining the ratio of cross sections for coplanar
emission on the opposite side (&C' = 180') to co-
planar emission on the same side of the beam
axis (&C' = 0'). In Fig. 4, this ratio is shown for
the polar angles of t9, = 40' and ~, = 70'. For each
data point of the figure, the cross sections have
been integrated over an identical energy interval
of 20 MeV width for each proton. The cross-
section ratio is plotted at the midpoint of this
interval.

The correlations expected from momentum
conservation with subsets consisting of A, =40,
70, 100, and 213 nucleons are shown by the solid
curves in Fig. 4. These calculations were per-
formed by assuming a fixed temperature of 7.1
MeV. (If one adopts a consistent thermal inter-
pretation of this moving-source parametrization,
the emission of the first proton should cool the
source. The effect of cooling was assessed for
the ease of &,=40; see the dashed curve in Fig.
4. It can be seen from the figure that the energy-
conservation requirement has only a small effect
on the asymmetry. ) Since rescattering by any
nearby cold nuclear matter can reduce the asym-
metry expected for the smaller subsystems, esti-
mates of A, deduced by comparisons of data to
these calculations can be viewed as upper limits
to the number of strongly interacting nucleons.
For low-energy protons, the experimentaQy ob-
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served asymmetry is small and comparable to
the calculation for 213 nucleons (the compound
nuclear mass). For protons of higher energy,
however, considerably larger asymmetries are
observed corresponding to significantly smaller
source sizes. This trend is in qualitative agree-
ment with our conclusions from the analysis of
the small-angle correlations.

ln summary, two-proton correlations meas-
ured for "0-induced reactions on '"Au at 400
MeV provide evidence for the formation and de-
cay of a localized region of high excitation in
agreement with the physical picture of a hot spot.
High-energy protons sample the early stages of
the reaction characterized by a rather small
space-time extent of the emitting source. Low-
energy protons, on the other hand, are primarily
emitted at later stages of the reaction correspond-
ing to an emitting source consistent with the com-
pound nucleus.
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