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For n-flavor lattice @CD rigorous lower bounds are derived on the masses of baryons,
for even n-6, and on the masses of flavor-nonsinglet mesons, for even n ~ 2. The lower
bounds are proportional to the pion mass. The consequence of these inequalities for chi-
ral-symmetry breaking is considered.
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Wilson's Euclidean lattice path integral' pro-
vides a mathematically unambiguous starting
point for a definition of QCD. In the present arti-
cle I prove, for n-flavor lattice QCD with even
n) 2, the inequality z„)z„, where m„ is the
mass of any flavor-nonsinglet state produced from
the vacuum by a quark-antiquark operator and ~,
is the lightest such state with pion quantum num-
bers. For even n) 4, I show in addition m~) (n
—3)(p -2) '~„, where m~ is the mass of any bar-
yon produced from the vacuum by a three-quark
operator.

The inequality on meson masses excludes the
possibility that ~, is the threshold for a continu-
um of multiparticle states incorporating two or
more quark-antiquark mesons. For n) 6 the bar-
yon inequality excludes the possibility that m, is
the threshold energy for a continuum of states in-
corporating two or more three-quark baryons or
antibaryons.

At the price of an additional technical assump-
tion, the proof can be applied without the restric-
tion to even n and without the restriction to n) 6
for the baryon mass inequality. With this addi-
tional assumption the baryon mass inequality be-
comes the somewhat stronger result yn&) m, .

Since these inequalities hold uniformly in lat-
tice spacing, lattice volume, and quark mass,
they hold also in the infinite-volume continuum
limit and in the continuum limit with quark mass
taken equal to zero, if these limits exist. If we
assume that these limits do exist and that the

zero-quark-mass theory has conserved chiral
currents, then the baryon mass inequality rules
out a Wigner realization of chiral symmetry (in
which a baryon becomes massless and pions are
massive). If a massive parity doublet is ruled
out as the lightest baryon by some additional
argument, for example, 't Hooft's anomaly con-
straint, ' the present baryon mass inequality im-
plies that the pion mass is zero. Barring a co-
incidental zero in the matrix elements of the chi-
ral currents between a one pion state and the vac-
uum, chiral-symmetry breakdown then follows.

The present mass inequalities can also be
proved for more general SU(N) gauge theories
and may place useful constraints on constituent
models of quarks and leptons.

Consider to begin the definition of vacuum ex-
pectation values in lattice QCD. The theory is
defined, as usual, on a finite-volume hypercubic
lattice with gauge variables U(x, y) ~ SU(3) on
each oriented nearest-neighbor link and quark
fields P„~ (x), g, ~ (x) on each site, where f is a
flavor index running from 1 to m, and 0 is a mul-
ti-index combining a spin index running from 1
to 4 and a color index running from 1 to 3. Let
the lattice spacing be a and the lattice length in
direction p, be I.&. We assume periodic boundary
conditions for the gauge fields and antiperiodic
boundary conditions for the quark fields. After
carrying out an integral over quark fields, the
vacuum expectation of a product of quark fields
(which is all we need for the present discussion)
becomes

(g, g, .f~ (x;)Tt,,"(y,. )) =Z 'f dp. det(M)" det, ,[M, , , '(x;,y, )5&,, ] expS.

Here 2 is defined by (I) = I, p is a product of one copy of Haar measure on each independent link vari-
able, and S is the usual gauge action given by a sum of plaquette contributions,

S =go g Tr[U(nr, x)U(x, y)U(y g)U(z ~)]
(~, x, y, z)

(2)

with each nearest-neighbor square counted once in each of its two possible orientations and g, equal to
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the bare coupling constant. The quark coupling matrix M in (1) is

M (x,y) = (4+m, a)6„,——,'g„[(i-y„)U(x,y)5,„,p + (I+y„)&(x,y)6,„p], (3)

where m, is the bare quark mass, p is a unit lattice vector in the + p, direction, (y& ) are a, set of four
Herrnitian Euclidean gamma matrices, and spin and color indices have been suppressed for conveni-
ence.

Now define a pion field operator

w" (x) = ('(x)y'g'(x),

with i p j. The pion propagator becomes, by Eq. (1),

(v"(x)p" (y)) =-Z 'f dp det(M)" Tr[y'M '(x, y)y'M '(y, x)]expS,

(4)

(5)

where the trace in (5) is over color and spin indices which have been suppressed and no sum is intend-
ed over i and j. From Eq. (3) we have also

[y'M (x, y )y']., =M „.*(y,x),

which is actually a consequence of charge-conjugation invariance for Euclidean QCD. Equations (5)
and (6) yield

(6)

(n"(x)w" (y)) =-Z 'f dp det(M)" g„lM„'(x,y)l'expS. (7

An argument similar to the derivation of (7) shows that for any quark-antiquark operator and its ad-
joint,

x"= C.'(x)C~'(x)r.„
with f eg, we have

x"=q.'( )q~'(x)r.„ (8)

(X '(x)X'~(y)& =-Z 'f dp, det(M)" Tr[ly'M '(x, y)*y I'M '(x, y)].

Equation (6) implies that det(M) is real, and thus for even n det(M)" is positive. The Cauchy-Schwarz
inequality then yields

l&x"(x)x"(y))l- I& "(x) "'(y)&l. (10)

It follows from Luscher's transfer matrix formulation of lattice QCD, ' however, that for sufficiently
large t and 1.4 with t «L4,

l(p"(x, t)w" (x, 0))l =exp[-m, t+o(t)], l(x '(x, t)x' (x, 0))l =exp[-~„t+o(t)], (11)

where ~„ is the mass of the lightest state produced by X(x). Equations (10) and (11) then lead to our
first inequality

1%x ~ m7I ~

(13)

Equation (1) then gives the baryon propagator

(II"(x)TI"(y))= Z'f dp-det(M)" M„, '(x, y)M». '(x, y)M„, '(x, y)2r„, I'. . ., expS.

By a double application of the Cauchy-Schwarz inequality Eq. (12) can also be proved for particles X
created by field operators X(x) with quark and antiquark fields residing at distinct sites and joined by
an ordered product of link variables.

Now consider a three-quark baryon field and its adjoint defined by

a"( ) = q, *(x)q,'(x)g, '(x)r„, , Il"(x) = q. '(x)q, '(x)q, '(x)r.„.

Since as before for even n, det(M)" is positive, Eq. (14) implies, for some positive coefficient y, the
inequality

I&&"(x)rl"(y)&l - yZ 'f dp det(M)"[Q. ~IM.&
'(x, y)l']"'expS.
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The Holder inequality can then be used to show that

I&&"(~)&"(y)&l~) (& 'f d~ det(M)"&.~IM.~ '(~, y)l'ex')'" '"'" "
x {z 'f dp det(M)"I Q„IM„'(x,y)l')"" expS$"(" ". (16)

From an argument similar to the derivation of (7) it now follows that for a product of n/2 pion fields
we have

(~"4)~ ~(" ""R)~"R) ~"'" "(~)&=~ 'f du «t(M)"[5~., 1M., '(~, y)l')""exps.

Equations (7), (16), and (17) imply

I(g j(~)~ z(y))
I

(
I ( g /(~) /i (y))l (n 3)/(n )I( 12( ) ~(n —1) g~) 1(y) ~n (n 1)(y)&l 1/(n 2)

(17)

(16)

(19)

Luscher's transfer matrix' for lattice QCD can then be used to show that for xt y, the expression
(7("(x) ~ n'" ""()()p 'g) ~ ~ ~ p" " "(x)& is a bounded function of x and y. Thus for another positive coef-
ficient y' we have

l&~"(~) f "(y)&l = ~ I&."(~)."(y)&l'" """".
By combining Eq. (19) with Eq. (11) for pions and
a corresponding equation for the behavior of the
baryon propagator at long distance, we obtain

n-3
mg n— (20)

As was the case for our first bound, Eq. (11),
Eq. (20) can also be obtained, by an extra applica-
tion of the Holder inequality, for three-quark
baryon operators in which the quark fields reside
on different sites and are joined by ordered prod-
ucts of link variables.

This completes the proof. A possible variation
in the arguments that I have given removes the
restriction to n ~ 6 for the baryon mass inequal-
ity, Eq. (20), and goes as follows:

The matrix I can be written

M =m a+8 +iI

where R and I are self-adjoint. Equation (6) im-
plies that the eigenvalues of I are either zero or
occur in matched pairs with opposite sign, and a
proof is given by Weingarten and Challifour' that
R has a nonnegative spectrum. Thus for positive
values of ~,a, det(M) is positive and M is a
bounded matrix. Unf ortunately weak-coupling ex-
pansions' show that a continuum limit with either
finite or zero quark mass can be obtained only
from negative values of gyes, a. Weak-coupling ex-
pansions and numerical work' also suggest, how-
ever, that in the infinite-volume limit R is bound-
ed from below by a strictly positive p, indepen-
dent of the gauge field U, and gyes, a of —p is the
critical point at which the quark mass goes to
zero. It is therefore a plausible hypothesis that
in the infinite-volume limit, for all positive val-
ues of quark mass, det(M) is positive and the ma-

trix M ' is bounded by a constant independent of
U. For staggered fermions'R vanishes, finite
positive quark mass requires finite positive m, a,
and the required bound one ' can easily be
proved. For staggered fermions, however, oth-
er aspects of the derivation of the present in-
equalities became messier. In any ease, with the
additional assumption of boundedness for M ' in
infinite volume, the Holder inequality applied to
Eqs. (7) and (14) yields for some constant y"

I(&"(~)B"(y)&l - y" &~'"(~)n" (y)&l, (22)

and therefore

Mg ~ M~. (23)

& ~On leave from the Department of Physics, Indiana
University, Bloomington, Ind. 47405.

With the boundedness hypothesis on M ', Eq. (23)
can actually be proved for any multiqua, rk state
composed of either quarks, antiquarks, or a com-
bination of the two.

After completion of this work I received two
preprints' in which estimates related to those
discussed here are derived.
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B. Svetitsky for valuable conversations. I am
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out an error in an earlier version of this paper.
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