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CP Nonconservation in Hyperon Decays
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Upper bounds on rate differences between particle and antiparticle decays of hyperons
are estimated in the standard six-quark model. For each of p p~, p —n7t-, Z+

n~+, g —p7I- fractional rate differences of order 10 6 are found whereas for ~ —n~,—p ~, and - —p 7t none is expected. Some other tests of Cp conservation in
hyperon decays relevant to left-right symmetric models are pointed out.
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It is well known that while the CPT theorem re-
quires equal lifetimes for particles and antipar-
ticles, it allows different partial widths for par-
ticular decay modes. Such particle/antiparticle
rate asymmetries due to CP nonconservation in
the standard six-qua. rk (Kobayashi-Maskawa)
model' have been estimated' for several process-
es recently. We know that any CP-nonconserving
effect below the threshold for b-quark production
in this scheme is expected' to be proportional to
s,s,sz [s, =sin&; and sz =sin6 where the angles
are defined as usual in the Kobayashi-Maskawa
(KM) matrix]. Here we estimate the rate asym-
metries for hyperon decays and find that while
they are proportional to this factor, they are re-
duced further by at least 3 orders of magnitude
as a result of dynamical effects, viz. the dom-
inance of a single final state and the smallness of
final-state interactions.

A =A, exp(i6, ) +A, exp(i6, ), (2)

where 4, and A, are the weak amplitudes for two
different final eigenstates which differ in one or
more of the (strongly) conserved quantum num-
bers, e.g. , isospin. b, and 6, are the final-state
scattering eigenphase shifts. The corresponding
antiparticle decay amplitude is then

A =A, *exp(i5,) +A, *exp(i5,) .

Then b. is found to be given by

We define the CP-nonconserving rate asymme-
try in a give n dec ay mode as

A=(r- r)/(r+ r),
where I is the particle decay rate for this chan-
nel and 1 is the antiparticle rate for the charge-
conjugate channel. I et the amplitude for the par-
ticle decay be A. given by

-2 IA, I IA, I sin(y, —y, )sin(5, —&,)

IA, I'+ IA, I'+2 IA, I IA, Icos(y, —y, )cos(&, —&,)
(4)

where A, =!A, ! exp(iy, ) and A, =!A, ! exp(iq, ).
From Eq. (4) it is clear that for b, not to vanish
we must have (i) at least two channels in the
final state, (ii) differing weak-interaction phas-
es, and (iii) unequal final-state strong-interaction
phases. This treatment is useful for the problem
at hand, viz. hyperon decays where the energy is
below threshold and the phase shifts are known.
In B decays, on the other hand, many channels
are open and the techniques of Ref. 2 are more
useful.

We now apply the above analysis to hyperon de-
cays. First, we consider = -A~ ™0-An'

and Z -nr decays. In each of these there is
only one final state, viz. I= I, I= 1, and I = 2,

! respectively. Hence by our reasoning above
there can be ~o CP-nonconserving rate asym-
metry for these three decay modes. Note that
the fact that both P- and S-wave amplitudes can
be present is irrelevant since they do ~ot inter-
fere in the total decay rate.

Next we turn to the modes A —pr and A-n~'.
Since experimentally F(A-n& ) ~ —,'gA-p& )
and by CPT we have I (A-n~') —QA-n~')
=-[ F(A-p& ) —¹-p&')],it follows that b,(A
-n&') = -2&(A-p~T ). Hence we need only esti-
ma«&(A-p~ ). The S-wave contribution to the
total decay rate for A-pv is almost' 90% of
the total rate and so the contribution from the P-
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wave amplitudes to the rate asymmetry can safe-
ly be ignored. The 8-wave amplitude can be
written as

S= -(~)'I' S, exp(i&, ) +(—,')'~'S, exp(i5, ), (5)

where 8, and S, are amplitudes for I= —,
' and &

final states, respectively, and 6, and 63 are mK

8-wave scattering phase shifts for I= —,
' and 2 at

E =M&. In the KM model for CP nonconservation
(with the usual phase convention), a CP-noncon-
serving phase for AS = 1 decays can only arise'
from cc and tt intermediate states. Since these
can give rise to 6I = —,

' only, S, is real. To ma&-
imize the possible CP-nonconservation we as-
sume that penguin diagrams' are the dominant
source for LU=-,' amplitude and hence for 8,. Then
83 is re al and the phas e of S, is give n by p whe re

(-2c,/c, c,)(s,s,s,)
(6)2 1 3 2 3

1+2s, +2s,s3ct;c2/cgc3
from the evaluation of the coefficient of operator
06,

06=(sik~dz)(uzk~us+2+A~u„+saA~sz), (7)

by Gilman and Wise. ' The parameters they used
are m, 30 GeV, m~=4. 5 GeV, and ni, =1.5 GeV.
Now from Re& =10 ' in the E~-E~ system, we
have" s,s3s z

- 0.3 & 10 ', and hence y - tan y--0.6&10 '. With sing --0.6 x10 ', g, —5, ~9.8'
and S,/S, ~0.027+0.008, we find'

b(A-pv )

—v 2(S,/S, )sing sin(5, —t, ) ~3 X10 (8)

and hence A(A-nv') =-2A(A-pv ) ~ —2x10 '.
Next we turn to Z' decay modes, Z'-nn'' and

Z'-p&'. Again by CPT we have I'(Z'-nri+)
—1 (Z'-n~-) = -[ r(z'-p~') —r(Z'-p~')] and
by the approximate equality' of observed rates
I"(Z ' pn'-) =1 (Z'-nv'); hence A(Z'-nv')
=——A(Z'-pv'). We choose to estimate &(Z'
-nv'). In the Z'-n&' decay mode, the P-wave
amplitude dominates, ' while the S wave (in the
rate) is down by a factor of about 1000, and so
the 5-wave amplitude can be safely ignored. The
P-wave amplitude can be written as'

P = (=P„+-,'P„)exp(i5„) + [ —,'P„-—,'(-;)'I'P„]exp(i5„), (9)

where P, ~ are the weak amplitudes engendered
by AI =I/2 leading to the final state of isospin J'/
2 and 5~, are P-wave z-X scattering phase shifts
for isospin J/2 at E =M~. Now we know that the
dominant bZ= & P-wave amplitude does not lead
to I =2 in the final state (notice, e.g. , that the Z
-nm P-wave amplitude is nearly zero). Hence,
to a good approximation P»~0. Next, to max-
imize possible CP-nonconserving effects we also
let P„~0. Then

P ~ --,'P„exp(i5„) =,' (+)~'P„exp(i 5„). (10)

As before, the LU =-,' amplitude P» has a phase y
and AI =2 amplitude P» is real. For b, (Z'-nw')
we obtain

a(z' —nv')

-2(2)'I'(P„/P„)sin@sin(5„—5„).

/P 0.050~ 0, 018, 5„—5~, = 1.7', and
sing- -0.6 &&10 ', we find A(2 '-n&') —= —10 '
and A(z'-pv') —= -A(Z'-nv') = 10

In the KM model CP-nonconserving phases do
not distinguish parity-conserving (P-wave) from
parity-nonconserving (S-wave) amplitudes. But
in some models" S- and P-wave amplitudes, in
general, are expected to get different CP phases.
In that case the following tests of CP invariance

P -/~- = tan(5„- 5,) (12)

signals CI' nonconservation. ' At present
——(6.5+1.5)' and P /o. is of o.rder ta.n(-7. 7
+4.0)'. Another test" for the presence of CP-
nonconserving phase difference between 8- and
P-wave amplitudes is the deviation of o./a from
-1, e.g. ,

cos[5s —
leap

—(As —A~) J

cos [ 5 s —5~ + (As —A~)]
(13)

where 6~ and 6~ are the final-state interaction
phases and h, ~ and 4~ are CP-nonconserving
phases of S and P amplitudes, respectively.

In Z decay, to the extent that the M= —,
' rule is

satisfied and o(z'-n~') and u(Z -n~ ) are
nearly 0, CP invariance is tested' by the follow-
ing equality for Z'.-pv' asymmetry parameters:

P'/n' = —,
' tan(5„—5,) +—', tan(~„—5,)

~0.03 + 0.05. (14)

The test of CP invariance in = decay is that'
p /o! = p'/o. =tan(5» —5,) independent of the AI

Here 5» and 6, are A-p 8- and P-wave
scattering phase shifts at E =M-. and difficult to

! become interesting. In A-p& a violation of the
equality

1824



VOLUME 5 1, NUMBER 20 PHYSICAL REVIEW LETTERS 14 NOVEMBER 198)

obtain experimentally. However, if p /o p p'/o'
both CP invariance and the AI = —,

' rule are violat-
ed, and furthermore CP nonconservation must be
unequal in M = —,

' and 2 amplitudes. Present data'
are that P /n =tan(5 +13) and P'/n'= tan(3. 6',",)'.

To summarize, if the source of observed CP
nonconservation in K decay is the phase 4 in the
KM matrix, then the only nonzero rate asymme-
tries possible in hyperon decays (in A and Z ) are
smaller than 10 '. It seems unlikely that these
are experimentally detectable in the near future.
To test other models, P/o. for the various decay
modes and the phase shifts have to be known to
one part in 10'.
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Note added. —'Ne would like to elaborate a little
on the neglect of the contributions of the P wave
in A-ps and the S wave in Z'-nv' to the rate
asymmetries. In the model at hand (the Kobaya-
shi-Maskawa model) the CP nonconservation
does not distinguish between parity-nonconserv-
ing and parity-conserving pieces of the Hamil-
tonian. Hence, unless the penguin-diagram con-
tribution is very different for the 8-wave and P-
wave amplitudes, the phase difference y is the
same for 8 waves and P waves. In that approxi-
mation the contribution to A(A-pv ) from P
waves relative to the one from 8 waves is

b.~ P, P, sin(5„- 5„)

(P,/P, ) P,' sin(5„—5„)
(S,/S, ) S,' sin(o, —5,)

'

Now experimentally (P,/P, )/(S, /S, ) is of order 1,
certainly less than 2; P,'/S, '-0.115; and sin(&»
—5»)/sin(5, —5,) = —sin0. 4'/sin9. 8' = -0.041.
Hence

~ A~/6, ~
0.01 and our approximation is

justified. In the case of Z'-nr', the small S-
wave amplitude is well described" by a small
pure AT= —,

' piece which has an equal mixture of
final-state T = —,

' and 2. Then the contribution to
the rate asymmetry due to the 8 wave relative to
that of the P wave is

2 5'~' $' ' P, sin(II, —O,)

With the experimental values (S'/P')'-10 ', P, /

P, -0.05, D, —4, -19, and 6„—6„-1.7, we find

(A, /A&) ~ 0.06 and again our approximation is
jus tif ied.

It should be emphasized that should the rate
asymmetries turn out to be much larger than our
estimates (say ~ 10 ') then the observed CP non-
conservation must be due to sources other than a
phase 6 in the KM matrix.
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