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Nonequilibrium Molecular-Dynamics Simulation of Couette Flow in Two-Dimensional Fluids
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Theory predicts that in two dimensions, the Navier-Stokes transport coefficients diverge.
The results of molecular-dynamics simulations of viscous flow for a two-dimensional
fluid are reported. The results suggest that, at gggg shear rate, instabilities in the flow
screen the predicted logarithmic divergence of viscosity with respect to strain rate.
When a Maxwell demon is used to suppress these instabilities, the computed. viscosity is
consistent with the divergent behavior predicted theoretically.

PACS numbers: 66.20.+d, 05.60.+w, 05.70.Ln

Ever since the discovery of "long-time tails"
by Alder and Wainwright, " there has been con-
siderable interest in the nature of hydrodynamics
in two dimensions. Alder and Wainwright' used
equilibrium molecular dynamics to show that the
Green-Kubo time correlation function for self-
diffusion Z(t), the velocity autocorrelation func-
tion

z(t) =~(v, (t) v,(0)),
decays very slowly at long time. A combination
of theory and simulation" lead to the prediction
that

In this paper we use nonequilibrium molecular
dynamics to calculate the shear viscosity of a two-
dimensional fluid at zero frequency and zero
wave vector. This technique has been discussed
many times. ' As the name suggests, the shear
viscosity q is calculated by taking the ratio of
stress -P„, to strain rate y = ~u„/'y. The com-
puted viscosity is observed to be a, function of
shear rate. Kawa. saki and Gunton (KG)' were the
first to show that "long-time-tail" processes are
expected to lead to nonanalytic, constitutive rela-
tions for the nonlinear shea, r viscosity q(y). In
two dimensions they predicted that4

Iim Z(t) t-
t

lim q(y) - log(y)
~p

(4)

where d is the dimensionality of the system (d
&1). Since the limiting zero-frequency self-dif-
fusion coefficient is the integral of Z(t), the self-
diffusion coefficient must diverge in two-dimen-
sional (2D) systems!

As has been pointed out many times, however, '
there is an inconsistency in this argument. In
order to derive the Green-Kubo relation

D= J dtz(t), (3)

one must assume that the relevant diffusive proc-
esses can be described by the linearized Navier-
Stokes equation. Starting with this assumption
one then derives the Green-Kubo formula, (3).
Subsequently kinetic theory' predicts the exis-
tence of long-time tails which ultimately lead to
the nonexistence of linearized hydrodynamics I

The way out of this dilemma is to realize that the
existence of t long-time tails shows that in 2D
the derivations of Green-Kubo relations are in-
valid. One cannot therefore trust the Green-Kubo
formulas to calculate Navier-Stokes transport
coefficients in two dimensions. At the present
time there is only one other technique available.
It is nonequilibrium molecular dynamics.

and

lim p(y) -ylogy.
)' -+0

(5)

In 1980 one of us' reported computer simula-
tions for small (X=32, 50, 98) two-dimensional
systems showing that (4) and (5) were indeed con-
sistent with the numerical results. As pointed
out in that paper, ' there was a large dependence
of the results upon the size of the system studied.
Recently there have been improvements in simu-
lation techniques" which allow us to simulate
much larger systems, N =896, 3584. As we shall
see the N = 896 and 3584 results are essentially
identical.

The system studied was N soft disks with

y(r) = ~(o/r)"

at a, temperature h T/e =1 and a series of densi-
ties pa' = 0.96, 0.9238, 0.6928. The truncation
distance is 1.50. The highest density is very
close to the freezing transition' ( p&o'=0. 986
+0.001, p„o'=1.007+0.001). Figure 1 shows the
reduced viscosity q* as a function of the common
logarithm of the reduced strain rate y* (= Bu„*/
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FIG. 1. The effective viscosity as a function of log&@
(N= 896, po =0.96). Dots depict the results of Doll's-
tensor simulations. Note the turnover due to kink in-
stabilities for y~0.1. Triangles depict the results of
constrained Doll's-tensor simulations. These two
sets of results show that the KG logarithmic divergence
is only obtained for steady, planar Couette flow. All
quantities are expressed in units of rpg, 0., e.

By*) for the high-density state with X=896. At
low y* we can see two sets of results. One is
essentially flat—the "turnover" —and the other
follows a logarithmic variation with y. The turn-
over is the naturally occurring result. We will
explain later how the extended logarithmic result
was obtained. At lower densities (Figs. 2 and 3)
we see the same qualitative features. At high y
the viscosity is consistent with the KG functional
form but then as we lower y we enter a turnover

regime.
The critical y at which the transition occurs in-

creases as we decrease the density until at our
lowest density the turnover regime extends over
much of the accessible range of strain rates.
Also in Fig. 3 we can see that within the statis-
tical uncertainties, the viscosity is independent
of y in the turnover regime.

In Fig. 2 we see a comparison of Doll's-tensor
simulations' with the homogeneous shear tech-
nique where the flow is driven solely by the peri-
odic image convention. We see that the two sets
of calculations yield the same results in both the
logarithmic and the turnover regimes. In Fig. 2

we can see that in both regimes the results are
independent of the system size. The results for
X = 896 and 3584 are statistically indistinguish-
able.

What are we to make of this extraordinarily
sharp transition from the logarithmic (KG) re-
gime to this apparently flat turnover regime'P

One of the extraordinary features of the KG
prediction is that at sufficiently low strain rates
two-dimensional fluids become negatively dilatant
(y logy is nonmonotonic). Thus the KG theory
predicts that in a finite range of shear rates
about the equilibrium state (=0), shearing two-
dimensional fluids should peak more efficiently
than they do at equilibrium 1

A thermodynamic argument can be produced
showing that such a situation is impossible. For
a nonequilibrium steady state' we have

dE= Tds -pdV+gdy, (7)

4

2

log 5

FIG. 2. q (y) as a function of log~op (pa =0.9238).
Triangles depict homogeneous shear, N= 896; dots
depict homogeneous shear, N= 3584; squares depict
Doll's-tensor shear, N = 896. All calculations agree
with each other within statistical uncertainties. There
is no N dependence or method dependence. The un-
stable turnover occurs at slightly larger y than for
&0-~ = 0.96 (Fig. z) .

0 log g

FIG. 3. g (y) as a function of log~pp for Doll's-tensor
simulations of 896 soft disks at po =0.6928. The un-
stable turnover region now extends to large y (=0.25),
making it difficult to observe the logarithmic regime.
Note the virtual independence of viscosity upon y in
the turnover regime.
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where &= &(T, V, y) measures the dependence of
internal energy E upon the magnitude of the
strain rate, y. It is easily shown that

Bg/By ~ 0. (8)

+(ideal gas term) . (10)

If the KG constitutive reaction (5) is substituted
into (10) we find that KG predicts &(y) -logy. For
sufficiently small strain rates f can become nega-
tive. We believe that this thermodynamic in-
stability is the explanation for the turnover from
the logarithmic (KG) regime.

In Fig. 4 we show shear dilatancy as a function
of y for the intermediate density. We see that
when the system appears to be entering the nega-
tive-dilatancy region, the turnover occurs. The
pressure suddenly becomes essentially indepen-
dent of shea. r rate, taking essentially the same

0"

log y

FIG. 4. Shear dilatancy &p(y)/y as a function of
log~py for po. =0.9238, The symbols have the same
meaning as in Fig. 2. If the data followed KG to equi-
librium then negative dilatancy would be observed for
y ~0.03. This is not seen. At an apparently higher
strain rate y-0.1, kink instabilities screen the KG
result and all properties become essentially independent
of y.

If this thermodynamics is to reduce to equilib-
rium thermodynamics then f(T, V, y=0) =0. Com-
bining this with (6) we see that for all state
points,

(9)

It is easy to see that the KG shear dilatancy (5)
violates this thermodynamic stability require-
ment (9). This follows since f can be evaluated
from the equation

)'(T, v, y) f ~(v', T, y)dv'

p(k-„) =Pp,. exp(ik-„q, . ),

where

(12)

k„=2&/L(n„, n, ); n„, n, =0, +1, +2, . . . . (13)

Qur Maxwell demon ensured that the first three
transverse modes" of the momentum field were
all zero. That is for n=(0, 1), (0, 2), (0, 3) and

(1, 0), (2, 0), (3, 0), it forced p(k„) =0. This is
accomplished by adding the appropriate cancel-
ing Fourier harmonics to the particle momenta.
Because of computational expense this was done
once every ten time steps during the course of
the simulation.

As can be seen in Fig. 1 the effect of this
straightening is dramatic. It totally removes the
turnover regime, with the result that over 2-,' de-
cades of strain rate the viscosity accurately
tracks the KG functional form. The Maxwell
demon has no effect in the preexisting KG regime.
The velocity profile was already linear so that
the straightening had no effect.

In the preexisting turnover regime the thermo-
dynamic instability manifests itself in convective
cells destroying the linearity of the velocity pro-
file. Evidently the number and amplitude of these
cells vary with y in such a way as to prevent the
thermodynamic strain rate potential, P, from
ever becoming negative.

We have presented results which show clearly
that steady planar Couette flow in two dimensions
becomes unstable at sufficiently seal/ strain
rates. This instability screens the predicted
logarithmic divergence of the two-dimensional

value as the equilibrium pressure.
Thermodynamics does not of course provide us

with a microscopic understanding of exactly what
processes are responsible for the turnover. The
turnover region is not easy to simulate. Fluctua-
tions are large but not simply because the strain
ra.te is small.

For a variety of reasons we believe that the
turnover was caused by transverse momentum
currents. To test this hypothesis we constructed
a Maxwell demon to straighten out these sus-
pected momentum kinks. This demon was con-
structed in the following manner.

If

q,. =p,. /m+q, Vu, (11)

then the momentum fp; ) defines a periodic pecu-
liar momentum field which can by synthesized in
a Fourier series:
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viscosity with respect to strain rate. We believe
that these effects invalidate existing theories of
Navier-Stokes transport in two dimensions. It
has long been known that close to equilibrium two-
dimensional systems are highly nonlinear. Evi-
dently this nonlinearity is so strong that not only
do the usual mode couplings occur between linear,
bilinear, . . . variables of the same wave vector,
but couplings also occur between phase variables
of different wave vectors. The latter processes
are responsible for the excitation of convective
cells in the flow.

Note added. —A partial account of this work
will be reported in Physics Today. "

~B. J. Alder and T. E. Wainwright, Phys. Rev. A 1,
18 (1970), and Phys. Bev. Lett. 18, 988 (1967); B.J.
Alder, D. M. Gass, and T. E. Wainwright, J. Chem.
Phys. 53, 381 (1970).

See, for example, P. Resibois and M. de Leener,
classical Kinetic Theory of I"/uids (Wiley, New Yorp,
1977), . p. 363.

D. J. Evans, Physica (Utrecht) 118A, 51 (1983).
K. Kawasaki and J.D. Gunton, Phys. Bev. A 8, 2048

(1973); T. Yamada and K. Kawasaki, Prog. Theor. Phys.
53, 1111 (1975); M. H. Ernst, B. Cichocki, J. R. Dorf-
man, J. Sharma, and H. van Beijeren, J. Stat. Phys.
18, 237 (1978); D. Forster, D. R. Nelson, and M. J.
Stephen, Phys. Bev. A 16, 732 (1977).

5D. J. Evans, Phys. Rev. A 22, 290 (1980).
6Thermostatting is detailed by W. G. Hoover, A. J. C.

Ladd, and B. Moran, Phys. Bev. Lett. 48, 1818 (1982);
D. J. Evans, W. G. Hoover, B. H. Failor, B.Moran,
and A. J. C. Ladd, Phys. Bev. A 28, 1016 (1983).

The Doll's-tensor method is described by W. G.
Hoover, D. J. Evans, B.B.Hickman, A. J. C. Ladd,
W. T. Ashurst, and B. Moran, Phys. Bev. A 22, 1690
(1980).

D. J. Evans, Phys. Lett. 88A, 48 (1982).
D. J. Evans and H. J. M. Hanley, Phys. Lett. 79A,

178 (1980), and 80A, 175 (1980); H. J. M. Hanley and

D, J. Evans, J. Chem. Phys. 76, 3225 (1982); D. J.
Evans, J. Chem. Phys. 78, 3297 (1983).

~ Note that the number of zeroed modes will increase
for larger systems.

' D. J. Evans, H. J. M. Hanley, and S. Hess, Phys.
Today (to be published).

1779


