
VOLUME 51, NUMBER 19 PH YSICAL REVIEW LETTERS 7 NovFMBER 1983

Collinear Laser-rf Double-Resonance Spectroscopy: 235U II Hyperfine Structure
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A novel technique combining the advantages of the laser-rf double-resonance scheme
and fast-beam collinear laser spectroscopy has been applied to a detailed study of the
hyperfine structure of ~SU I I. The experimental results are analyzed with use of ab
in@$0 Dirac-Fock calculations of the reduced radial parameters of relativistic hyper-
fine-structure theory. The analysis results in a new value for the nuclear dipole mo-
ment p( ~U) = —0.38(3)pz and a determination of the spin density g' (7s) = —2880(75) MHz
of the 7s electron.

PACS numbers: 35.10.Fk, 32.30.Bv, 32.70.Jz

The application of rf spectroscopy to the investi-
gation of ionic species has mainly developed with-
in the last two decades. High-resolution magnet-
ic resonance experiments have been carried out
on ions in a discharge or on single ions in elec-
trostatic traps. With the notable exception of the
work of Novick and Commins' on 'He II, the atom-
ic-beam magnetic-resonance method has not been
generally applied to the study of ionic species,
the reason being the large inhomogeneous mag-
netic fields needed for state selection. This dif-
ficulty has been overcome, replacing the mag-
netic field state selectors with optical pumping
regions, ' as first demonstrated for an ion beam
by Rosner et al. ' and later used by Ko'tz et al. to
study "LiII.'

In this Letter we present a novel technique com-
bining the advantages of laser-rf double-reso-
nance spectroscopy' and collinear fast-beam las-
er spectroscopy. ' Resolution =100 times higher
than conventional collinear fast-beam laser spec-
troscopy is easily achieved. This is demonstrat-
ed by measurements of hyperfine structures of
five odd-parity metastable levels in '"U II, con-
stituting the first high-resolution spectroscopic
data of a 5f element. A schematic diagra, m of
the apparatus used in this work is shown in Fig.
1. A universal ion source followed by an electro-
static accelerator and separator magnet produces
a 50-keV, isotopically pure "'U' ion beam. A

typical beam current was 0.5 pA, distributed
among many metastable levels belonging to the
three odd configurations 5f'7s', 5fs6d7s, and
5f'6d'. The output from a cw ring-dye laser is
superimposed on the fast-ion beam in a collinear
geometry. Resonance with the fast-moving ab-
sorbers, in well-defined spatial regions, is ac-
complished by application of suitable voltages to
floating Faraday cages surrounding the beam
zones 3 and B, acting as postacceleration tubes.
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FIG. 1. The experimental apparatus consisting of an
electrostatic accelerator with magnetic isotope selec-
tion and a laser spectrometer consisting of a cw ring-
dye laser and ~ meter. The laser field and the fast
accelerated ions are superimposed in a collinear
geometry with optical pumping of hyperfine level 5'
in the initial state taking place in zone A and probing
via the scattered laser photons in zone B. Zones A, B
consist of Faraday cages where the ions can be Doppler
tuned into resonance with the laser field. Level I" can
be repopulated by inducing rf transitions E'+1- E in
zone C and probing this rf absorption in zone B via
the increase in scattered light. The optical resolution
in zones g, B is =18 MHz full width at half maximum,
limited by high-voltage fluctuations, and the rf reso-
nances in zone C have a transit-time —limited full
width at half maximum of =400 kHz.
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Laser-induced fluorescence in zone B is detected
by a cooled photomultiplier tube and processed
through standard electronics. The velocity of the
fast-moving ions is determined by means of a
traveling Michelson A. meter' allowing us to meas-
ure the optical Doppler shifts to within 10 '. In
between the pump and probe regions A and B, an
rf section is inserted allowing magnetic transi-
tions to take place in the C region with only an
off-resonant laser field present. The rf field is
produced in a 50-Q impedance-matched coaxial
transmission line, This design has been chosen
in order to insure a uniform field distribution
over an appreciable length (length of interaction
47.5 cm) and a simple field configuration, con-
sisting of one traveling TEM mode along the beam
axis. The entire rf section is surrounded by a
Mumetal shield, reducing the ambient static mag-
netic field to =5 mo. For a 50-keV "'U'beam,
the transit-time broadening thus becomes the sole
observable contributor to the linewidth.

The laser-rf double-resonance scheme is well
discussed in the literature' ' and only a brief out-
line, with emphasis on specific features of this
experiment, will be given here. The Faraday
cages A and B act as pumping and probing zones,
respectively. With appropriate voltages applied
to them, the laser field will be resonant on one
particular I'-I ' hfs transition in both zones. The
effect of the resonant light in zone A is a deple-
tion of the population of level I' due to optical
pumping. This is observed in zone B as a reduc-
tion of the laser-induced fluorescence monitored
by the photomultiplier tube. Application of an rf
field resonant on the transitions j'+1-E to the
rf section C will repopulate the level I, depleted
in zone A, with an increase of the number of scat-
tered photons in probe zone B as a consequence.
This allows a direct determination of the hfs split-
tings (E+I)-E. In this setup a collinear geometry
was chosen for the following reasons: As a re-
sult of the low beam current available and the dis-
tribution of the ions on many different metastable
states, an appreciable depopulation in zone A is
necessary in order to obtain a good signal-to-
noise ratio. For a 50-keV '"U' beam this de-
mands an interaction length of several centimet-
ers, difficult to obtain in a crossed-beam geom-
etry. Moreover, because of the longitudinal ve-
locity compression, yielding optical resolution
below 20 MHz in our experiment, a major part of
the ion beam will participate in the laser-rf
double-resonance process thus further enhanc-
ing the obtainable signal-to-noise ratio. This
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FIG. 2. A typical rf resonance, observed in the E'
=6-7 transition in the 5790 cm ', J=~ level. The rf
power used was 6 W, corresponding to an oscillating
magnetic field of 25 mG. The associated Habi-flopping
frequency (cyclic) of Q =600 kHz corresponds to a
transition probability of 30% in zone C. The solid line
represents a fit to the data using the transit-time-
limited line shape sin'[(0' + 6') ' t)/(0' + d ), where
g is the detuning and 2t the interaction time.
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feature also has the important consequence that
spurious signals due to interaction with different
velocity groups in zones A and h are readily
avoided.

With an interaction length of 30 cm between
laser field and ions in zone A (this corresponds
to -1.5 psec) and laser power 0.3 W/cm', a 40/o-
50/o reduction of scattered photons in zone B was
typi. cally achieved. Half of this depletion could
be pumped back by a few watts of rf power, thus
allowing data collection times on the order of a
few minutes for each rf spectrum of the type
shown in Fig. 2. The measured transition fre-
quencies have been corrected for Doppler shifts
on the order of 50-500 kHz. The fitted line shape
is the Babi solution for the inversion in a two-
level system with the experimental full width at
half maximum found in this way being in good
agreement with the transit-time limit dictated by
an interaction length of 47.5 cm and a 50-keV
2~'U+ beam.

The single most important systematic effect is
the dependence of the measured rf-transition fre-
quencies on the applied post acceleration, this be-
ing a direct measure of the detuning of the laser
field in the rf region C. No ac Stark shifts of the
resonances were observed within our limit of un-
certainty. This is consistent with a calculation
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TABLE I. hfs intervals measured with collinear fast-
beam rf-laser double-resonance spectroscopy. The
listed magnetic dipole (electric quadrupole) interac-
tion constants A (B) represent least-squares fits to
these hfs intervals, using the zeroth-order spin Ham-
iltonian (Hef. 7). No second-order hfs corrections
have been applied. The uncertainty on vo is 10 kHz.

Level&
(cm-') &, (MHz) g (MIIz) gg (MHz)

4585 (3 yp 6-7
7-8
8-9
3-4

5
5-6
6-7

5790 ) ) yp 5-6
6-7
7-8
8-9

6445' jp 2-3
3-4

71669 /'2

5-6
6-7

231.720
76.334

520.990
322.726
342.494
321.252
250.274
380.885
439.959
496.967
551.642
469.419
696.822
985.044
338.360
582.834
923.580

9.546(3) 3105.1(10)

—60.301(6) 400.1(2)

62.753(3) —37.4(1)

—235.010(3) —1276.9(10)

—107.843 (6) —1349.6{10)

of the optical Babi frequencies inferred from
lifetime measurements performed earlier. ' With
a post acceleration voltage of 300 V, correspond-
ing to a frequency detuning of =1 6Hz, an ac
Stark shift of the rf resonance of the order of 100
Hz is calculated.

The results of our measurements are summar-
ized in Table I. The quoted hfs coupling constants
represent least-squares adjustments to the ob-
served hyperfine intervals and are not corrected
for second-order hfs. Together with optical data,
obtained for seven other levels, by use of fast-
beam collinear laser spectroscopy, these results
have been analyzed within the Sandars-Beck for-
malism' of relativistic hyperfine-structure the-
ory. To obtain the needed intermediate-coupling
wave functions, fine-structure levels" of U II
have been fitted to a model" which contains elec-
trostatic and spin-orbit interactions for the com-
plete manifold of the lowest three odd configura-
tions, f's', f'ds, and f'd'. Twenty-one param-
eters were allowed to vary in order to fit sixty
known odd levels, with other parameters fixed
at values consistent with Hartree-Fock calcula-
tions or extrapolated from other spectroscopic
information. Eigenvectors from the diagonaliza-

tion were then used to transform the hfs matrix
elements for these three configurations to inter-
mediate coupling. The second ingredient in the
hfs analysis is the relativistic one-electron inte-
grals' I'„', which have been calculated by use of
a multiconfigurational Dirac-Fock procedure" "
with the finite size of the 235-uranium nucleus
represented by a Fermi surface. " For the non-
s electrons the relativistic effects on these inte-
grals amount to 10%-20%%uo,"whereas the E,,' in-
tegral f(P, Q,'. + Q, P,'. )r 'dr for the 7s electron
is highly relativistic as well as strongly depend-
ent on the nuclear potential. P (Q) is the large
(small) component of the Dirac wave function.
Thus the experimental data for the magnetic di-
pole interaction have been least-squares adjusted
to a model with E,, ~ (Vs) and the nuclear magnetic
dipole moment p. of 235 uranium as variable pa-
rameters. The calculated values for E,, (5f) and
E,,'(Gd) were used in this analysis, the reason
being their small contributions to the dipole coup-
ling constants g as compared to the dominant
E,,'(Vs) contribution. For the metastable levels
belou 6000 cm ' of excitation energy the experi-
mental measured A values are fitted to within 2%
with p("'U) = —0.38(3)p„and the Fermi-coupling
constant ~"(Vs) = —2880(75) MHz.

The value p = —0.38(3)p„ is slightly larger than
previous determinations'~ with electron-nuclear
double resonance (p, = —0.36) and electron para-
magnetic resonance (p. = —0.35). In our analysis,
the extended nuclear magnetization, "estimated
to be + 3%, has not been included due to the 10%%

uncertainty in the eigenvectors. Its inclusion in-
creases the discrepancy with the previous p. de-
terminations. However, the high internal consis-
tency in our analysis shows that nuclear mo-
ments indeed can be evaluated from optical data
for these complicated actinide elements.

The Fermi-coupling constant a'o(Vs), given by
a"(Vs) = 4980 pE, ~»»(7s), allows an experimental
determination of E,~»~, (7s) = 1.52(8) a.u. The
Dirac-Fock value E,~»~, (7s) =1.43 a.u. has been
calculated with the coupling scheme" ((5f' 'I)J„
(6d'D) J„(7s'S)zjJ and with the total wave func-
tion a linear combination of configuration state
functions that are eigenstates of parity, J', and
J,. The effect of introducing the Fermi surface
of the uranium-235 nucleus decreases the Dirac-
Fock value of E,~»~, (7s) by - 30/0 as compared
to a point nucleus, whereas the variation of
E,~»~, (7s) over the various 8 values only amounts
to -2%.

This study thus clearly demonstrates that the
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introduction of new high-resolution methods al-
lows us an insight into the complex actinide ele-
ments, complementary to classical Doppler-
limited spectroscopy. " Eigenvectors based on
such classical spectroscopy, Dirac-Fock calcu-
lations, "and high-resolution collinear fast-beam
rf-laser double-resonance spectroscopy have
permitted a detailed analysis of the magnetic hy-
perfine structure in the three odd configurations
of "'U II. This analysis takes advantage of the
pure intermediate-coupling wave functions charac-
teristic of the ion as compared to the atom, al-
though they do not allow the analogous analysis
of the electric quadrupole interaction at present.
This work was supported by the Danish Natural
Science Research Council.
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