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An asymptotic solution to interacting walks in one dimension is presented, For re-
pulsive and attractive interactions, respectively, the model describes aspects of un-
correlated diffusion on a lattice with sources or with randomly distributed traps. In the
latter case, the average number of sites visited varies with the number of steps in the
walk as N'/3, while the survival probability decays as N~!/3exp(~bsN'/?), improving on

previous predictions for diffusion with traps.

PACS numbers: 05.60.+w, 66.10.Dn, 82.20.Db

Consider a discrete random walk on a lattice in
which each new site visited has a weight p, so
that a walk which visits s distinct sites has a sta-
tistical weight p°. This model was recently intro-
duced! in order to describe various aspects of
diffusion in randomly porous media and self-in-
teracting polymer chains. For p >1, a walk is
more likely to visit new sites at each step and
the walk is self-repelling. Alternatively, when
a new site is visited, the additional weight factor
of p is equivalent top — 1 new copies of the origi-
nal walk being “born” and included in a statisti-
cal ensemble. This may be thought of as uncor-
related diffusion in a medium consisting of uni-
form sources.

For p <1, walks which return to previously
visited sites are more likely to occur and the
walk is self-attracting. Equivalently, as each
new site is visited the weight factor of p less than
unity may be regarded as a nonzero probability
that the walk will “die” and disappear from the
ensemble. In fact, it has been demonstrated!
that there is an exac! correspondence between
the total statistical weight of an ensemble of self-
attracting walks of N steps, and the quenched
average probability that a diffusing particle will
survive until N steps in a medium with randomly
distributed traps present with probability 1-p,

a problem of classical importance as well as the
focus of recent interest.? *°

In this Letter, we present an asymptotic solu-
tion for this interacting walk model in one dimen-
sion. For the self-repelling case, we find that
for all p >1, the mean number of sites visited af-
ter N steps, (sy), scales linearly in N, while the
number of walks present in a statistical ensem-
ble after N steps grows as e*”. For the attracting
case, we find that for all 0<p <1, (sy) ~N** while
the survival probability varies as N~ Y% exp(~ bhN'/3),
The latter result lies between the lower and up-
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per bounds given recently by Grassberger and
Procaccia® and by Kayser and Hubbard,® respec-
tively.

Our solution is based on calculating the distri-
bution of visited sites in a one-dimensional ran-
dom walk. This problem has received consider-
able attention in the past, and a number of exact
solutions have been published.!' The resulting
expression is rather complicated, however, and
it is not clear how to extract an asymptotic form
for the distribution which is suitable for applica-
tion for interacting walks. Our 7 -matrix ap-
proach has the advantage that the asymptotic
form of the distribution can be calculated in a
simple manner. Furthermore, we can also cal-
culate the exact expression for the distribution
and the average number of visited sites much
more simply than the earlier approaches.? In
addition to solving the problem at hand, the T
matrix can be applied to treat interacting walks
with an external bias as well.*

To begin, define Py(s) as the number of N-step
random walks that visit s sites on an infinite one-
dimensional chain (Fig. 1). The minimum value
of s is 2 corresponding to a walk which reverses
direction at each step, while the maximum val-
ue of s is N+1 corresponding to a completely
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FIG. 1. Schematic picture of the distribution function
Py (s) for unrestricted random walks in one dimension.
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stretched walk., It is possible to enumerate the
number of N-step walks that visit s sites when
s= N, by an application of the reflection method.*
For s >N/2, a relatively simple expression may
thereby be derived in terms of binomial coeffi-
cients. Finally, employing Stirling’s approxima-
tion, we find the asymptotic form,

lim Py(s)~exp(—s®/2N). (1)

s—>N

To find the asymptotic form of Py(s) in the lim-

it s/N -0, let us represent the one-dimensional
chain as the (1+1)-dimensional space-time lat-
tice indicated in Fig. 2. The trajectory of a ran-
dom walk on the chain then maps to a directed
random walk on the two-dimensional strip. In
terms of the sX s transfer matrix

01 0
10 1. 0

T,=10 1 0.7, |, (22)
o .01

1 0

one may readily verify that the number of direct-
ed random walks of N steps on a strip containing
s sites per row equals

1]
1

ar1...0ryN 1 =M. (2b)

(1)

To see this result, note that the matrix T  trans-

Nt A n+

"Time"

s sites

FIG. 2. Representation of a one-dimensional chain
of s sites as a (1+ 1)-dimensional strip. A sample
random walk is indicated.
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fers a particle up by one row in a strip of s sites
by moving the particle from column » to column
n+1orn-1. Therefore the Nth power, 7.7,
transfers a walk N rows, and the column and row
vectors consisting of all ones performs a summa-
tion over all starting and terminal points of the
walk. By a Fourier transformation, one readily
finds the eigenvalue spectrum x*)=2 cos(7k/
(s+1)], k=1,2,...,s, and eigenvectors e,
~sin[mnk/ (s +1)], where n=1,2,...,s refers to
the nth component of the eigenvector.

The matrix product in Eq. (2a) counts walks
which span the strip horizontally (i.e., visit every
site of the projected one-dimensional chain), as
well as walks which visit fewer sites. To find
Py(s), only the spanning walks are relevant while
the nonspanning walks must be subtracted off. It
may be verified that

(TN =Py(s)+2Py(s = 1)
+3Py(s =2)+...+(s =1)Py(2). (3)

By writing equations similar to (3) for (7T,_,%),
k=1,2,...,s -1, one may then write Py(s) in
terms of a sum over the expectation value of
transfer matrices. It is then straightforward to
calculate these expectation values in a basis
where the matrices are diagonal, and we have
thereby obtained the exact expression for Py(s).*?
Notice also that Eq. (3) can be simply manipulat-
ed to yield the following formal expression for
(sy), for an unrestricted random walk in one di-
mension:

N+1 N
(o= 33 sPuls)=v+2) -G @

and by evaluating (7 /") in a basis where T is di-
agonal, one then finds (sy) =~ (8N/7)"?, in agree-
ment with well-known results,!

For interacting walks, we require a simpler
asymptotic form for Py(s). Since the largest ei-
genvalue of the lower-rank T matrices is small-
er than that of T,, we may write

lim Py(s)~ {2 cos[n/(s + 1)]}". (5)
s/N—o0
As a rough approximation, we postulate that the
full distribution for Py(s) can be adequately de-
scribed by the product of the asymptotic forms
for s/N-0 and s~ N. Thus

Py(s)= A{2 cos[n/(s + 1)]}¥ exp(- s2/2N), (6)

with A a normalization coefficient which we ob-
tain approximately by steepest descents. We
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write Py(s) =A expl f(s)], with
f(s)=N1n{2 cos[n/(s +1)]} = s?/2N. W)

To find the maximum value of the distribution
function, we calculate f’(s) and set it equal to
zero. In the limit s,N— «, we find for this max-
imizing value of s

S max= (N)*2 (8)

in agreement with well-known results for the one-
dimensional random-walk problem. This also
suggests that the assumption made in Eq. (6) for
Py (s) is valid asymptotically. Finally, by writing

f(s)g f(smax)'*'%(s —smax)zf”(smax)"" L)

we than perform a simple Gaussian integral to
find that A~ N~ 172,

We now calculate the physical quantities of in-
terest for p # 1. The distribution of visited sites
now has the form

Py(s,p)=Py(s)p*=N"Y2explg(s)],
with
g(s)=N1n{2cosl[a/(s +1)]} =s*/2N+sInp. (9)

Setting g’ (s) equal to zero yields, in the limit

S =

Nr?/s®=s/N+1np=0 (10)

and the value of s, now depends onp. For all
p >1, if we assume that s _,, grows more rapidly
than NY? we may neglect the first term in Eq.
(10) to obtain

Smax ~ N1np. (11a)

This result indicates that for any p >1, the as-
ymptotic behavior is governed by the self-avoid-
ing walk limit, where (sy)=N+1. For O<p<1,
we assume that s, grows more slowly than N*/?
so that the second term in Eq. (10) may be ne-
glected. This gives

S max™~ [NT*/ (= 1np)]*/3.

We expect that in one dimension, the root mean
square displacement should also scale as s, SO
that a new type of transport law is predicted.
Notice that by setting s,,., in Eq. (8) equal to
that in Eq. (11a), we find a crossover value, N,
~ (Inp)~?, below which random-walk behavior
should occur, and above which self-avoiding-
walk-like behavior should occur. Similarly for
the attracting case, we find a crossover value of
N,~(=1Inp) 2, beyond which the new (sy)~N'"?

(11b)

behavior should be observable.
Finally, we calculate the quantity

fu= 13 Puls)psl/2". (12)

This is the total statistical weight of all N-step
interacting walks divided by the total number of
N-step random walks. For p>1, fy gives the
growth rate for the number of N-step walks,
while for p <1, fy gives the probability for a ran-
dom walk to “survive” to N steps on a lattice
with randomly distributed traps. We have

fu~ N2 [ explg(s)]ds. (13)

By expanding g (s) in a Taylor series about s,
and performing the Gaussian integral, we find
for the repelling case, where s ,,~NInp,

fy~exp[N(1np)?]~ exp(N/N,),

while for the attracting case, we use s~ [N/
(=1np)]¥? to obtain

fw~ (N/N,)™ V3 exp| - (N/N,)?].

Our result for fy lies between the bounds given
in Refs. 9 and 10. There the time dependence of
the particle density at the origin was calculated,
whereas we find the total particle density. How-
ever, our approach suggests that the exponential
time dependence of these two quantities will be
the same (see also Ref. 8). In addition to obtain-
ing the dominant exp(-~ N*/®) behavior, we also
find an N '3 power-law correction not predicted
by the approximate bounds. This power-law cor-
rection disagrees, however, with the result of
Ref. 8. Also noteworthy is a (Inp)*/® dependence
in the exponential. This differs from the p de-
pendence of (1-p)*® given in Refs. 8—10, except
in the limit p — 1, However, for p not very close
to 1, the methods of Refs. 8-10 appear to have
some difficulties, suggesting that a power-law
dependence on p is not an adequate description
for all p.

In conclusion, we have presented a simple ap-
proach to solving an interacting-walk model in
one dimension. For the self-repelling case, or
equivalently walks which may self-replicate upon
visiting new sites, we find that (s,) ~N and that
the number of walks grows as e®”. For the self-
attracting case, we find that (sy)~N%?, and that
the number of surviving walks varies as N~ /3
x exp(— bNY?), This latter result improves on
earlier predictions for the time dependence of the
density of diffusing particles on a lattice with
randomly distributed static traps.

(14a)

(14b)
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Note added: After this paper was completed,
we learned that M. D. Donsker and S. R. S. Varad-
han [Commun. Pure Appl. Math. 28, 525 (1975)]
have proved the existence of a nonexponential de-
cay law in all dimensions; our results agree with
theirs in one dimension. We thank Y. Oono and
Y. Shapir for bringing this work to our attention.
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