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New Variational Principle for Decaying States
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The Hamiltonian of a system containing decaying states is subjected to a nonunitary
similarity transformation which introduces the wave functions of these decaying states
as well as those of the "antidecaying" dual states explicitly into the representation.
The dependence of the Green's-function pole on these wave functions is used to formulate
a variational principle for their determination, yielding a non-Hermitian, nonlinear
wave equation including self-energy contributions. Explicit solutions are given in a sim-
ple example.

PACS numbers: 03.65.Ca

Since, in the usual description with a self-ad-
joint Hamiltonian, decaying states cannot be
eigenstates of the Schrodinger equation, many
approaches have been developed which modify
this self-adj oint condition. Important examples
are (1) use of non-Hermitian boundary conditions
as in the theory of Gamow-Siegert states" and
ihe Kapur-Peierls method'; (2) analytical con-
tinuation as in the complex rotation or complex
stabilization method' '; (3) use of non-Hermitian
"effective Hamiltonians" as in the optical poten-
tial and related methods; and (4) more unconven-
tional approaches which modify the basic descrip-
tion of quantum mechanics, such as the rigged
Hilbert-space formulation. ' Variational methods
have been shown to be useful in conjunction with
several of these approaches. ' "

In this Letter we report a new procedure, using
a particular similarity transformation to give a
non-self-adjoint Hamiltonian, for formulating a
variational principle which gives a nonlinear,
non-Hermitian, Schrodinger-like equation for cal-
culating wave packets describing initial states of
decaying particles. " This variational principle"

uses the duality relationship between a decaying
state and its time-reversed partner in the choice
of similarity transformation. This allows us to
clarify the connection with other approaches and
better understand the time-reversal duality. Our
variational principle is an improvement upon
previous ones in that self-energy and environ-
mental effects are included.

The decay of a state i j (t)) is characterized
by its persistence amplitude

g (I) =-t(y (o) I y (t))
or by its Laplace transform to the complex ener-
gy plane,

g (s) = J dt g„(t)e'". (2)

Although adequate for single-particle potential
resonances, this definition requires generaliza-
tion in the case of single or composite particles
coupled to a many-particle environment. The
most convenient representation for such prob-
lems is Fock space. For one composite with n
constituents decaying into vacuum, the inner pro-
duct in (1) is a, vacuum expectation value (OiA„(t)
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xA t~0) in which
4

A „t = J dx, dx„ y (x, x„) p y(x, ) y y(x„),
to the y:

with P (x, ) the field operator creating the jth con-
stituent at position x, , A„(t) the Heisenberg op-
erator e's'A~e '"' and A~t=A„y(0).

The generalized Tani transformation'4 is a
unitary transformation V transforming the com-
posite-particle state A„y~ 0) into an elementary-
particle state a t~0). Decay processes are ex-
hibited as exPlicit interaction terms in the Fock-
Tani Hamiltonian H = U '0 F„~U. For our present
purposes it is necessary to generalize U to a non-
unitary similarity transformation 8." We take
the Fock-Tani Hamiltonian to be S 'H F„kSwith"

S=exp[(ir/2)F], F=g„(A„ta -a tB ). (4)

In general the y occurring in the A. include
both bound states and resonances, although we
shall concentrate on the latter. The B annihilate
composites in the dual states y:

B„=fdXy„(X)y(x„) ~ ~ ~ y(x,), (5)

where X =(x„.. . , x„) and the y„are biorthogonal"

[g/ay„(X ) ] [z „+8y
-Z ~ y" J y q(X ' ) (p y(X ')dX ' ] = 0,

[«~9.(X)1[~ -ZBy~sy J PB(X'') V y(X')dX']=0.

It is not difficult to show that' '"
S-'A„t(0) =a„'[0), &0(B.S= &0[a..

Although H is now non-Hermitian, it has the same
real eigenvalues as HF„p.

Our generalization of (1) to Fock-Tani repre-
sentation is

g„(f) = -i (a (f )a„t),

where a„(t) is propagated with the Fock-Tani
Hamiltonian. Environmental effects can be in-
cluded by taking (0) = Tr (pO). A I iouville-space
representation" of (8) and (2) is useful. In the
case of a state decaying into a continuum, g (z)
has a branch cut along the real axis and its ana-
lytic continuation into the lower half plane has a
pole z characterizing the decay, whose position
is a functional of y„and q . This is the basis of
our variational method. %e require that z be
stationary under functional variation of y„and

subject to biorthonormality:

(9)

To obtain more explicit equations one can introduce the self-energy representation

( )
(a„a„t)-~.- W(, v 8, v y)

(10)

Here e is the "unperturbed" energy Jq (X)B(X)y„(X)aX(in general complex), B(X) is the Schrodinger
Hamiltonian of the n constituents of q including their interactions, and 2; is the proper self-energy,
which can be conveniently evaluated in I iouville-space representation. " z is a solution of

~n —~n- ~n(~a~ 9'8~ 0'y) =0 ~

Substitution of the functional derivative of (11) into (9) yields

(1 —~Z„/sz„) '[B(X)y„(X)+ BE„/scp (X)]=+&Z„~ y~(X)

(1 —»./S~. ) -'[fi(X)y.(X) +»„/S~„(X)]=P,~,„"+,(X) .
(12)

Here BZ„/&p„(X) is the partial functional deriva-
tive of Z„(z, ys, q y) with respect to y holding
~, the yq with pwn, and all y, constant, and
similarly for 92; /&y (X); &1,'„/Sz„ is the usual
partial derivative with respect to z„. B denotes
the adjoint with respect to the biorthogonal inner
product:

If H(X) is the sum of nonrelativistic kinetic ener-
gy and a local potential (no magnetic field or spin)
then H =H. More generally, if we write H =B(X,
P) to indicate the dependence on momenta p„=i&/
~x, as well as coordinates x, , then

J f(X)lf(X)g(X)dX= Jg(X)a(X)f(X)dX. (13) H(X, f ) =a(X, -I ), (14)
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where the tilde denotes transposition of indices
of spin matrices or of arguments of any nonlocal
kernel.

If the terms in (12) involving Z„are dropped
and only the normalization constraint retained
(only A. „nonzero) then we obtain the well-known
resonance variational equations. ' " Our varia-
tional method may be regarded as a generaliza-
tion including self -energy contributions.

In the case of degeneracies (linearly indepen-
dent q „belonging to the same z ) one has the
usual freedom of choice. As a reasonable physi-
cal principle for resolving such arbitrariness it
ls natural to require that the slmllarlty trans-
formation commute with all constants of the mo-
tion. Under fairly general conditions it can be
shown" that Eqs. (12) and (5) and this additional
requirement are satisfied by y = y-, where
the quantum-number set n differs from u only
by reversal of those quantum numbers odd under
time reversal [ usually only the m of any I;
and the k of any exp(z17 R, )]. This general-
izes the standard rule' ". Take the complex
conjugate of Y, factors, but not of radial wave
functions or multiplicative c-number factors.

The connection with time reversal is clarified
by consideration of the relation between the in

!
states and the out states. The T-matrix elements

in Fock-Tani representation are"'"
Tt.=(vsl TI V.) = &ol~aT~. '!o&

=(y, l vip„') =(y, -l vl y.). (15)

Thus 4 t!0), which contains y~, is the t- -~
asymptotic initial state which evolves into a pure
outgoing-wave decaying state ! g ') representing
a particle which has completely decayed by time
zero, whereas B St! 0), which contains yz*, de-
scribes the asymptotic final (t-~) "antidecaying"
state from which the pure incoming-wave state
! g 8 ) at t=o is "retroevolved. '"' This agrees
with the conclusions of Baker" (compare also
the analysis of Bohm').

We conclude by examining the explicit form of
Eqs. (12) and their solution in the simplest case
of a single particle in a local potential. " Assum-
ing H(x) = -2V'+ V(x), one can evaluate 1;„to
second order in the decay interaction using the
Liouville-space representation" and the explicit
Fock-Tani Hamiltonian. " In the case of a single
resonance state,

Here ! g ') and (gz ! are solutions of the in-state
and out-state Lippmann-Schwinger equations, re-
spectively. Recalling T=S 'TF„qh and using (7)
gives

T,.= {0!H, TF.„~„'!0&.

Z„= J q „(x)[H(x) —e„]G„(x,y)[H(y) —e ] y„(y)dxdy
=-J V„(x)[--,'V'+2V(x) —e ] cp„(x)dx+ J y (x) V(x) G„(x,y) V(y)y„(y)dx dy,

where

(i7)

G (x, y) =(2~)
iA(x-y )

— d"k
E~ —2k +'t fj

and d is the number of dimensions. The first expression shows that Z vanishes if j~ is a bound state
whereas the second gives, with (12),

——,'(1 —I~) V'y (x) —I~V(x) y (x) + V(x) J G~(x, y) V( y) y ( y) dy = (a —e ) y (x),

where A. „=A. and

I.=-J p„(x,) V(x,)[ SG„(x„x,)/S~„] V(x,)q „(x,)d, d, . (20)

One can write (19) as D„y„=X y„, where D is a
non-Hermitian, nonlinear effective Hamiltonian.
The fact that D„ is a nonlinear operator (func-
tional of y and y„) even for a, single particle can
be interpreted as a self-interaction arising from
the orthogonalization between the continuum and
the decaying discrete state. " The complex con-
jugate of the second Eq. (12) is D„(y„)*=A.„*(y„)*,
where D is the usual Hermitian conjugate of D .

We have solved (19) for the ease of a, particle

! in one dimension tunneling out of a double-delta
well b[b(x + —,') + b(x ——,')]. The even-parity wave
functions y„(x) are constxcos(kx) for !x!&-,'
and constxexp(zklx I) for lxl & where k has
positive real pa.rt n&(1 —b ' —b '+. . .) and posi-
tive imaginary part ,'(n&)'b '+.—.. with n =1, 3, 5,

The odd-parity solutions (n = 2, 4, 6, . . . )
are similar. These solutions have nonzero cur-
rent, yet decay exponentially with !x! in the ex-
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terior region. The resonance parameters deter-
mined from z agree with those calculated from
the transmission coefficient with use of the scat-
tering eigenstates. " The dual states are y„= y„
since n is invariant under time reversal.
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