Comment on "Diffusion in a Medium with a Random Distribution of Static Traps"

In their Letter,¹ Kayser and Hubbard consider a particle diffusing among random static traps. Let $P(t)$ denote the probability of survival of the particle up to time t , averaged over the trap distribution; they show an upper bound on $P(t)$ and note that together with a lower bound of Grassberger and Procaccia' it yields

$$
C_1 \leq \lim_{t \to \infty} \frac{-1}{t^{d/(d+2)}} \ln P(t) \leq C_2, \tag{1}
$$

where d is the space dimension and C_1 , C_2 are finite, strictly positive constants. It is the purpose of the present Comment to stress the fact that such a result can be viewed as a direct consequence of a probabilistic result which was proved some years ago and which furthermore provides the *exact* asymptotic behavior of $P(t)$!

Let us suppose the traps to have radius ϵ and uniform probability distribution with density n , as in Befs. 1 and 2. The averaged survival probability $P(t)$ is easily seen to be equal to $E(\exp[-n])$ $\times S_t^{\epsilon}$) where S_t^{ϵ} is the volume of the Wiener sausage (i.e., of the set of points at distance less than ϵ from a Brownian path up to time t) and E denotes averaging over all Brownian paths. Donsker and Varadhan have proven' the following theorem:

Theorem.—For any $\epsilon > 0$,

$$
\lim_{t\to\infty}\frac{1}{t^{d/(d+2)}}\,\ln\big(E\{\exp-n\,S_t^{\,\epsilon}\}\big)=-k(n,d),
$$

where

$$
k(n, d) = n^{2/(d+2)} \left(\frac{d+2}{2} \right) \left(\frac{2\gamma}{d} \right)^{d/(d+2)}
$$

and γ is the lowest eigenvalue of $-\frac{1}{2}\Delta$ in the d dimensional sphere of unit volume with zero boundary conditions.

We add a few comments:

 (i) In fact the authors of Refs. 1 and 2 consider the mean return probability $\rho(t)$ at time t , instead of $P(t)$. It is easily verified that the asymptotic behavior of $\rho(t)$ and $P(t)$ coincide within a multiplicative power of t .

(ii) The result of Ref. 3 is a difficult one, in particular the proof of the upper bound. It is remarkable that one obtains the exact asymptotic behavior of $P(t)$. After computation, $k(n,d)$ exactly coincides with the lower bound of Ref. 2; notice that in the theorem the diffusion constant has been taken implicitly as $\frac{1}{2}$, which corresponds to the normalized Brownian motion.

(iii) The result of Donsker and Varadhan extends to other diffusion processes^{3,4} and to various random walks. In particular the case of random walks with long-range jumps can be treated⁴: dom walks with long-range jumps can be treate
The asymptotic behavior is then $t^{\frac{d}{(d+\alpha)}}$ instea The asymptotic behavior is then $t^{d/(d+\alpha)}$ instead
of $t^{d/(d+2)}$ where α is a parameter governing the range of the jumps.

(iv) However, the method of Ref. 3 is difficult and does not extend easily to various other situations whereas the method of Bef. 1 makes explicit the basic mechanism and can be directly generalized to study for example the case of partially absorbing traps.⁵

We are glad to thank S. Alexander and G. Toulouse who brought to our attention the result of Bef. 2, and the authors of Bef. 1 for correspondence and information about their work in Ref. 5.

Franqois Delyon

Bernard Souillard Centre de Physique Theorique Ecole Polytechnique F-91128 Palaiseau Cédex, France

Received 5 August 1983 PACS numbers: $05.60.+w, 66.10.Cb, 82.20.Db$

 ${}^{1}R$. F. Kayser and J. B. Hubbard, Phys. Rev. Lett. 51, 79 (1983).

 $P²P$. Grassberger and I. Procaccia, J. Chem. Phys. 77, 6281 {1982).

 3 M. D. Donsker and S. R. S. Varadhan, Commun. Pure Appl. Math. 28, 525 (1975).

⁴M. D. Donsker and S. R. S. Varadhan, Commun. Pure Appl. Math. 32, 721 (1979).

 ${}^{5}R$. F. Kayser and J. B. Hubbard, "Reaction-diffusion in a medium containing a random distribution of nonoverlapping traps" (to be published).