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Comment on "Diffusion in a Medium with a
Random Distribution of Static Traps"

In their Letter, ' Kayser and Hubbard consider
a particle diffusing among random static traps.
Let P(t) denote the probability of survival of the
particle up to time t, averaged over the trap dis-
tribution; they show an upper bound on P(t) and
note that together with a lower bound of Grass-
berger and Procaccia' it yields

where d is the space dimension and C„C, are
finite, strictly positive constants. It is the pur-
pose of the present Comment to stress the fact
that such a result can be viewed as a direct con-
sequence of a probabilistic result which was
proved some years ago and which furthermore
provides the exact asymptotic behavior of P(t)!

Let us suppose the traps to have radius & and
uniform probability distribution with density n,
as in Befs. 1 and 2. The averaged survival prob-
ability P(t) is easily seen to be equal to E(ezpL-n
&S, )) where S, is the volume of the Wiener
sausage (i.e., of the set of points at distance less
than e from a Brownian path up to time t) and E
denotes averaging over all Brownian paths. Don-
sker and Varadhan have proven' the following
theorem:

Theorem. —For any &)0,

lim „,(„» In(E(ezp —n S, j) = —k(n, d),
1

where

&I(&+2)

( d) 21(d +2)

andy is the lowest eigenvalue of —&& in the @-
dimensional sphere of unit volume with zero
boundary conditions.

We add a few comments:
(i) In fact the authors of Ref s. I and 2 c'onsider

the mean return probability p(t) at time f, , in-
stead of P(t). It is easily verified that the as-

ymptotic behavior of P(t) and P(t) coincide with-
in a multiplicative power of t.

(ii) The result of Ref. 3 is a difficult one, in
particular the proof of the upper bound. It is
remarkable that one obtains the exact asymp-
totic behavior of P(t). After computation, k(n, d)
exactly coincides with the lower bound of Ref. 2;
notice that in the theorem the diffusion constant
has been taken implicitly as 2, which corre-
sponds to the normalized Brownian motion.

(iii) The result of Donsker and Varadhan ex-
tends to other diffusion processes'4 and to vari-
ous random walks. In particular the case of ran-
dom walks with long-range jumps can be treated'.
The asymptotic behavior is then t"" ' instead
of t "' "" where a is a parameter governing the
range of the jumps.

(iv) However, the method of Ref. 3 is difficult
and does not extend easily to various other situa-
tions whereas the method of Bef. 1 makes explicit
the basic mechanism and can be directly general-
ized to study for example the case of partially
absorbing traps. '

We are glad to thank S. Alexander and G. Tou-
louse who brought to our attention the result of
Bef. 2, and the authors of Bef. 1 for correspon-
dence and information about their work in Ref. 5.
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