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A new formulation of lattice gauge theory with fermionic degrees of freedom is present-
ed and analyzed. Arguments are given which imply that, unlike all previous local pre-
scriptions, the present one allows the implementation of chiral symmetry without leading
to the doubling of fermion species. This permits the lattice regularization of theories

with handed fermions.
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The lattice regularization of quantum field the-
ory, introduced' by Wilson and by Polyakov, has
made possible an impressive advance in our un-
derstanding of the underlying dynamics of gauge
theories. The main reason for this is that, un-
like all other methods devised to regularize the
ultraviolet divergences of realistic field theories,
the lattice provides a momentum cutoff which is
both nonperturbative as well as gauge invariant.
Although perturbation theory has led to important
results in theories like quantum electrodynamics
its usefulness in the study of strong-interaction
phenomena is rather limited. For quantum chro-
modynamics (QCD), the current model for the
strong interactions, a nonperturbative treatment
is essential.

Once a quantum field theory has been defined
through a lattice-regulated path integral, non-
perturbative Monte Carlo methods can be suc-
cessfully used to analyze its properties.? Indeed,
in the last few years, the use of such methods
has uncovered many important aspects of quan-
tum chromodynamics.®

Although lattice theories describing the dynam-
ics of gauge and scalar fields are by now rather
well understood, the very definition of fermion
fields on the lattice presents serious difficulties.
Several clever techniques have been invented to
solve the notorious problem of numerically simu-
lating these theories,* but the conceptual prob-
lems associated with spinor lattice fields remain.
Arguments have been produced which trace these
difficulties to the geometrical nature of fermions.
Because scalars and vectors carry tensor repre-
sentations of the rotation group, a well defined
prescription exists for writing down lattice the-
ories for these fields which will have the right
properties in the continuum limit; no such pre-
scription exists for spinor representations of
the rotation group.® These rules tell us that sca-
lars are naturally associated with lattice sites
and vectors with lattice links. They also tell us
what kind of finite-difference operator will be

the appropriate lattice version of a partial deriv-
ative acting on these kinds of fields. It seems
clear that a truly satisfactory state of affairs for
lattice fermions must await a deeper understand-
ing of their geometric role.

The problem is how to transcribe the standard
action for a fermionic field ¥(x) of mass m min-
imally coupled to a gauge field A (x). The contin-
uum action reads

s =JT(ip+m)y, (1)
where D=7, (v"@,+igA ) is the Dirac operator.
The simplest lattice action corresponding to (1) is
obtained by associating fermions with sites. To
maintain the properties of (1) under Hermitian
conjugation, 9,J(x) is transcribed by use of the
symmetric finite-difference operator,

8,000) = 8,9, =(2a) " W,y y= Uy ), (2)
where a is the lattice spacing, » is a site in the
lattice, and » + u is the next site in the o direc-

tion. With use of the link variables' U,,, the lat-
tice form corresponding to (1) is given by

S=2 0,70, b, +mY, 0, 9,, (3)
n,[u n

where 0 ,° is the gauge-covariant version of A
given by

8,2 0,=(2a) " Wy Uy = U - ). (4)

Notice that, when m =0, both (1) and (2) are in-
variant under the global chiral transformation
P~ exp(iys0)¥, ¥=9exp(iy,h). (5)
This implies the existence of a conserved chiral
currentj“f’. An immediate conflict arises. In
the continuum theory, this current has an anom-
alous divergence: Whereas formal manipulations
using the equations of motion imply that it is con-
served, careful quantization shows that it is not.®
On the lattice, on the other hand, the equations
of motion are rigorously valid and can be used to
prove the conservation of j,ﬁ for any value of the
lattice spacing. The lattice resolves this conun-
drum by creating extra states which cancel the
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anomaly. This degeneracy can be seen most
easily by diagonalizing (3) in momentum space.
With U,, set equal to 1, the inverse propagator
is given by

K p)=a"" T, v,sinp,a+m, —1/a< p,<1/a. (6)

As a— 0 for fixed p,, K "'(p) has a nonvanishing
limit when ap, =~ 0 as well as when ap, ~+7 in
any direction. This is the standard fermion-
doubling problem, Careful perturbative analysis’
shows that this multiplicity (2¢ in d dimensions)
indeed cancels the chiral anomaly, The degen-
eracy can be traced to a symmetry of (3) under
b~Ty, P~PT7', where T=1, v,75(~=1)™, the so-
called doubling symmetry. In momentum space,
these transformations correspond to a shift in
momentum by 7/a (mod 27/a) in the p direction.
But the existence of the anomaly is crucial. In
QCD, for example, it is responsible for the ob-
served mass splitting between the n and 7 me-
sons. This difficulty was circumvented by Wil-
son® by adding to (3) a term which gives (momen-
tum-dependent) masses to the extra states in such
a way that the correct anomaly is recovered in
the continuum limit.”*® However, in doing this,
the lattice theory is no longer chirally invariant.
This seems to preclude the lattice regularization
of theories with handed fermions, like the Glas-
how-Weinberg-Salam model.

Species doubling is not an exclusive property
of the particular form chosen for (3). Recently,
in fact, a theorem has been proven® which shows
that, in accordance with the above arguments,
it is impossible to solve the species-doubling
problem in a chirally invariant fashion. Because
this theorem does not rely on quantization, it
provides an argument which is more powerful
than that based on the chiral anomaly given above.
The proof of this result, usually called the Niel-
sen-Ninomiya theorem, depends, of course, on
a set of assumptions. It is required that the in-
teraction operator be local (falling off at infinity
fast enough to define a continuous Fourier trans-
form), translationally invariant over a finite
number of lattice spacings, and Hermitian (a real
Fourier transform). These are certainly reason-
able assumptions. However, they are by no
means necessary to define a sensible theory in
the continuum limit. Recall that the lattice is
merely a useful device to define the quantum
theory when the lattice spacing is taken to zero.
It is clear, though, that the only way to avoid the
consequences of the theorem is to modify the
physics of the lattice system by violating one or

more of the assumptions in such a way that the
resulting model may still have the right continu-
um limit. The purpose of this Letter is to pro-
pose one such scheme.

Possible solutions to the doubling problem
which differ from that suggested here have been
presented in the literature. However, these pro-
posals either require nonlocal interactions,'® or
are only directly applicable in theories without
dynamical gauge fields.!' I will therefore con-
centrate on the assumptions of Hermiticity and
translation invariance.

The action presented below is constructed by
introducing a dimensionless, real scalar field
¢ (x) whose interaction with the fermion fields
breaks translation invariance as well as Hermi-
ticity of the interaction operator. That this may
be done follows from the freedom, afforded by the
lattice, of introdueing nonrenormalizable interac-
tions (operators which become irrelevant as a
- 0). Indeed, the implementation of exact gauge
invariance on the lattice requires an infinite num-
ber of such terms.' Specifically, I consider the
action

Se= 2L vy M (@), +m ) P, 0, (7
np n
where
My@)=2[(1+¢,)0,"+(1-¢,)6,"]; (8)

6," and 5, are, respectively, the forward and
backward covariant first-difference operators,
6u+d)n=a“1(wn+u Unu "'d)n),
i, ¥,=(i0,")70,.
Notice that [iM,(¢)] T =iM (- ¢). In the clas-
sical continuum limit, the ¢-independent part
of the interaction operator, 3(6,*+8,7)=6,°, is
just 9,, whereas the ¢-dependent piece, %qan(ﬁu‘”
-8,7), is proportional to the lattice spacing times
the covariant Laplacian. Thus, the classical
continuum limit of (7) is just (1).

To define the quantum theory in such a way that
expectation values of Hermitian operators are
real, I choose ¢(x) to be a symmetrically dis-
tributed random field. A convenient choice is a
Gaussian distribution of width o,

(¢,2=0, (¢,¢,)=05., (10)
and the normalized integration measure for ¢ is

(9)

D<p=IﬂI(—2i;-(§‘)LI7§ exp <—- 2 %"6—>. (11)
With
Z,= /DU DY DY expl-S,(U,T,v)], (12)
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the expectation value of an operator O(U,7,?) is
defined as the quenched average

(0)=[Dpz,™ [DU DF DY O(U,T,v)

x exp(=S ). (13)
Because ¢ is symmetrically distributed, it fol-
lows that (13) is real if O is Hermitian, I em-
phasize that ¢ is a fully quenched, classical field,
independent of the lattice spacing and any other
parameters of the theory. Introducing a long-
range random interaction affects the correlation
length of the dynamical fields. In a sense then,
a physical effect of defining the theory through
(13) is that, for fixed, finite a, the functional in-
tegral over ¢ introduces an average over finite
correlation lengths, affecting primarily large-
momentum (short-distance) modes. The action
given by (7) is explicitly invariant (when m = 0)
under the global chiral rotation (5). However,
because of the local nature of ¢, it is no longer
invariant under the doubling symmetry (or gen-
eralizations of such local transformations). Fur-
thermore, although the chiral symmetry of (7)
implies the existence of a conserved current j,,°,
the matrix elements of this current, given through
(13), need not be divergenceless. This observa-
tion provides a plausible way out of the anomaly-
cancellation argument. In fact, the appearance of
an anomalous divergence of ¢ jws) closely resem-
bles the continuum mechanism: It is quantization
(in our case, functional averaging) which bars
the naive conservation of the current.

I shall now argue that the spectrum of this the-
ory does not have the unwanted degeneracy pres-
ent when ¢,=0 everywhere. For arbitrary ¢,
momentum space will no longer diagonalize M, (¢).
Nonetheless, some understanding of the effect of
@, on the spectrum of states can be attained by
analyzing a particular set of piecewise-constant
configurations. Consider first a situation where
¢, assumes a constant value ¢, throughout the
lattice. For simplicity, consider the case m=0.
The poles of the propagator are located at mo-
menta satisfying the lattice dispersion relations

Tusin?30,[1-(L+oP)sin®z0,]=0,

(14)
@2, sin?36, sind, =0, 6,=ap,.

It can be readily shown that 6, =0 is an isolated
solution of (14) for any finite ¢ ,: (14) has no
other solutions within a sphere of radius 2/(1
:+<poz)1/2 centered at the origin, Further, it is
also easy to see that, for any ¢,, 6,=0 is the
only solution with this property. Assume now
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that two configurations, ¢, and ¢,/, lead to a
common pole at 6, It then follows from (14) that
either ¢ ,=+¢,’ or 6, =0, That is, two different
constant configurations have no common excita-
tions surviving the continuum limit other than
those around p, =0. If one expands the disper-
sion relations for ¢, around an excitation (p u# 0)
corresponding to ¢,’ one finds that the square of
the energy E%(¢,) is shifted from zero by a nega-
tive amount proportional to the square of the in-
verse lattice spacing. In ¢,, such an excitation
would correspond to a state with a large imagi-
nary mass. A rough approximation to a set of
configurations satisfying (10) can be constructed
by dividing the lattice into N sublattices, L;, with
¢, assuming a constant value q)oi in each of the
L;. If one neglects boundary terms and applies
the above analysis to the resulting superposition,
it becomes apparent that the only excitations
which have a finite probability as a —~ 0 are those
which would correspond to p,~ 0. It seems rea-
sonable to conjecture that the same result applies
to arbitrary configurations ¢, obeying (10).

Of course, the above are only plausibility argu-
ments. There are, however, stringent numeri-
cal tests of these ideas. The simplest thing one
can do is to calculate the two-point function as
defined by (13). Asymptotically, the ratio of the
two-point function obtained with the naive action
given by (3) to that defined through (13) should
equal 2¢ in d dimensions if the present theory
works.

To perform this calculation using standard
Monte Carlo techniques, I have studied an auxil-
iary scalar model. The reasoning is as follows.
The correct interaction operator for a scalar
field on the lattice is just the lattice Laplacian
-2 uA,*A, 7. However, a scalar model with pre-
cisely the same degeneracy as the naive fermion
model can be constructed by using instead the
interaction operator =33 ,A ,°A,* = M,?, whose
dispersion relation coincides with that of the
naive fermion model. Likewise, a scalar model
with an interaction defined through the square of
M, (¢) will have the same degeneracy as the fer-
mion model given by (7). The results of a first
Monte Carlo analysis of the scalar models, shown
in Fig. 1, are consistent with the expected value
of 2¢ for the ratio of the two-point function of the
doubled model to that obtained from the present
theory.

I have performed this analysis only for d =2
and restricted myself to distributions for ¢, with
0<0.1. Because of possible peculiarities of dis-
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FIG. 1. G4(n) is the two-point function for the scalar
model with interaction operator My’ G(n) is the cor-
responding correlation for M%(¢) defined through (13).
These results are for a 20? lattice with 0= 0.05. The
expected ratio is 4.

ordered systems of low dimensionality, a careful
analysis of the theory as a function of o as well
as its study for d> 2 should be done. Also, the
direct application of these ideas in a well under-
stood fermionic model should be tried. This work
is currently in progress.
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Note added.—Since this Letter was submitted,

the numerical analysis has been extended to three

.and four dimensions. Also, a more refined study

of the two-dimensional model as a function of ¢
has been performed. Within the statistical accur-
acy of these simulations, the new results agree
with those reported here.
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